您当前的位置:首页 > 电脑百科 > 程序开发 > 算法

分布式ID生成--雪花算法

时间:2019-09-05 09:21:45  来源:  作者:
分布式ID生成--雪花算法

 

导读:唯一ID可以标识数据的唯一性,在分布式系统中生成唯一ID的方案有很多,常见的方式大概有以下三种

  • 依赖数据库,使用如MySQL自增列或Oracle序列等。
  • UUID随机数
  • snowflake雪花算法(本文将要讨论)

一、数据库和UUID方案的不足之处

采用数据库自增序列:

  • 读写分离时,只有主节点可以进行写操作,可能有单点故障的风险
  • 分表分库,数据迁移合并等比较麻烦

UUID随机数

  • 采用无意义字符串,没有排序
  • UUID使用字符串形式存储,数据量大时查询效率比较低

二、关于雪花算法

有这么一种说法,自然界中并不存在两片完全一样的雪花的。每一片雪花都拥有自己漂亮独特的形状、独一无二。雪花算法也表示生成的ID如雪花般独一无仁。

分布式ID生成--雪花算法

 

雪花算法概述

雪花算法生成的ID是纯数字且具有时间顺序的。其原始版本是scala版,后面出现了许多其他语言的版本如JAVA、C++等。

组成结构

分布式ID生成--雪花算法

 

大致由:首位无效符、时间戳差值,机器(进程)编码,序列号四部分组成。

特点(自增、有序、适合分布式场景)

  • 时间位:可以根据时间进行排序,有助于提高查询速度。
  • 机器id位:适用于分布式环境下对多节点的各个节点进行标识,可以具体根据节点数和部署情况设计划分机器位10位长度,如划分5位表示进程位等。
  • 序列号位:是一系列的自增id,可以支持同一节点同一毫秒生成多个ID序号,12位的计数序列号支持每个节点每毫秒产生4096个ID序号

snowflake算法可以根据项目情况以及自身需要进行一定的修改。

三、雪花算法的缺点

雪花算法在单机系统上ID是递增的,但是在分布式系统多节点的情况下,所有节点的时钟并不能保证不完全同步,所以有可能会出现不是全局递增的情况。

四、总结

分布式唯一ID的方案有很多,本文主要讨论了雪花算法,组成结构大致分为了无效位、时间位、机器位和序列号位。其特点是自增、有序、纯数字组成查询效率高且不依赖于数据库。适合在分布式的场景中应用,可根据需求调整具体实现细节。

感谢您的阅读,如果喜欢本文欢迎关注和转发,本头条号将持续分享IT技术知识。对于文章内容有其他想法或意见建议等,欢迎提出共同讨论共同进步。



Tags:雪花算法   点击:()  评论:()
声明:本站部分内容来自互联网,转载是出于传递更多信息之目的,内容观点仅代表作者本人,如有任何标注错误或版权侵犯请与我们联系,我们将及时更正、删除,谢谢。
▌相关评论
发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表
▌相关推荐
导读:唯一ID可以标识数据的唯一性,在分布式系统中生成唯一ID的方案有很多,常见的方式大概有以下三种 依赖数据库,使用如MySQL自增列或Oracle序列等。 UUID随机数 snowflake雪花...【详细内容】
2019-09-05   雪花算法  点击:(29)  评论:(0)  加入收藏
相关文章
    无相关信息
最新更新
栏目热门
栏目头条