您当前的位置:首页 > 电脑百科 > 程序开发 > 编程百科

深度学习之模型压缩、加速模型推理

时间:2023-11-20 14:49:09  来源:微信公众号  作者:小白玩转Python

简介

当将一个机器学习模型部署到生产环境中时,通常需要满足一些在模型原型阶段没有考虑到的要求。例如,在生产中使用的模型将不得不处理来自不同用户的大量请求。因此,您将希望进行优化,以获得较低的延迟和/或吞吐量。

  • 延迟:是任务完成所需的时间,就像单击链接后加载网页所需的时间。它是开始某项任务和看到结果之间的等待时间。
  • 吞吐量:是系统在一定时间内可以处理的请求数。

这意味着机器学习模型在进行预测时必须非常快速,为此有各种技术可以提高模型推断的速度,本文将介绍其中最重要的一些。

模型压缩

有一些旨在使模型更小的技术,因此它们被称为模型压缩技术,而另一些则侧重于使模型在推断阶段更快,因此属于模型优化领域。但通常使模型更小也有助于提高推断速度,因此在这两个研究领域之间的界限非常模糊。

1.低秩分解

这是我们首次看到的第一种方法,它正在受到广泛研究,事实上,最近已经有很多关于它的论文发布。

基本思想是用低维度的矩阵(虽然更正确的说法是张量,因为我们经常有超过2维的矩阵)替换神经网络的矩阵(表示网络层的矩阵)。通过这种方式,我们将减少网络参数的数量,从而提高推断速度。

一个微不足道的例子是,在CNN网络中,将3x3的卷积替换为1x1的卷积。这种技术被用于网络结构中,比如Squeez.NET

最近,类似的思想也被应用于其他用途,比如允许在资源有限的情况下微调大型语言模型。当为下游任务微调预训练模型时,仍然需要在预训练模型的所有参数上训练模型,这可能非常昂贵。

因此,名为“大型语言模型的低秩适应”(或LoRA)的方法的思想是用较小的矩阵对原始模型进行替换(使用矩阵分解),这些矩阵具有较小的尺寸。这样,只需要重新训练这些新矩阵,以使预训练模型适应更多下游任务。

深度学习之模型压缩、加速模型推理

在LoRA中的矩阵分解

现在,让我们看看如何使用Hugging Face的PEFT库来实现对LoRA进行微调。假设我们想要使用LoRA对bigscience/mt0-large进行微调。首先,我们必须确保导入我们需要的内容。

!pip install peft
!pip install transformers
 
  from transformers import AutoModelForSeq2SeqLM
  from peft import get_peft_model, LoraConfig, TaskType

  model_name_or_path = "bigscience/mt0-large"
  tokenizer_name_or_path = "bigscience/mt0-large"

接下来的步骤将是创建在微调期间应用于LoRA的配置。

peft_config = LoraConfig(
    task_type=TaskType.SEQ_2_SEQ_LM, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1
)

然后,我们使用Transformers库的基本模型以及我们为LoRA创建的配置对象来实例化模型。

model = AutoModelForSeq2SeqLM.from_pretrAIned(model_name_or_path)
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()

2.知识蒸馏

这是另一种方法,允许我们将“小”模型放入生产中。思想是有一个称为教师的大模型,和一个称为学生的较小模型,我们将使用教师的知识来教学生如何进行预测。这样,我们可以只将学生放入生产环境中。

深度学习之模型压缩、加速模型推理

这种方法的一个经典示例是以这种方式开发的模型DistillBERT,它是BERT的学生模型。DistilBERT比BERT小40%,但保留了97%的语言理解能力,并且推断速度快60%。这种方法有一个缺点是:您仍然需要拥有大型教师模型,以便对学生进行训练,而您可能没有足够的资源来训练类似教师的模型。

让我们看看如何在Python/ target=_blank class=infotextkey>Python中进行知识蒸馏的简单示例。要理解的一个关键概念是Kullback–Leibler散度,它是一个用于理解两个分布之间差异的数学概念,实际上在我们的案例中,我们想要理解两个模型的预测之间的差异,因此训练的损失函数将基于这个数学概念。

import tensorflow as tf
from tensorflow.keras import layers, models
from tensorflow.keras.datasets import mnist
from tensorflow.keras.utils import to_categorical
import numpy as np

# Load the MNIST dataset
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

# Preprocess the data
train_images = train_images.reshape((60000, 28, 28, 1)).astype('float32') / 255
test_images = test_images.reshape((10000, 28, 28, 1)).astype('float32') / 255
train_labels = to_categorical(train_labels)
test_labels = to_categorical(test_labels)

# Define the teacher model (a larger model)
teacher_model = models.Sequential([
    layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),
    layers.MaxPooling2D((2, 2)),
    layers.Conv2D(64, (3, 3), activation='relu'),
    layers.MaxPooling2D((2, 2)),
    layers.Conv2D(64, (3, 3), activation='relu'),
    layers.Flatten(),
    layers.Dense(64, activation='relu'),
    layers.Dense(10, activation='softmax')
])

teacher_model.compile(optimizer='adam',
                      loss='categorical_crossentropy',
                      metrics=['accuracy'])

# Train the teacher model
teacher_model.fit(train_images, train_labels, epochs=5, batch_size=64, validation_split=0.2)

# Define the student model (a smaller model)
student_model = models.Sequential([
    layers.Flatten(input_shape=(28, 28, 1)),
    layers.Dense(64, activation='relu'),
    layers.Dense(10, activation='softmax')
])

student_model.compile(optimizer='adam',
                      loss='categorical_crossentropy',
                      metrics=['accuracy'])

# Knowledge distillation step: Transfer knowledge from the teacher to the student
def distillation_loss(y_true, y_pred):
    alpha = 0.1  # Temperature parameter (adjust as needed)
    return tf.keras.losses.KLDivergence()(tf.nn.softmax(y_true / alpha, axis=1),
                                           tf.nn.softmax(y_pred / alpha, axis=1))

# Train the student model using knowledge distillation
student_model.fit(train_images, train_labels, epochs=10, batch_size=64,
                  validation_split=0.2, loss=distillation_loss)

# Evaluate the student model
test_loss, test_acc = student_model.evaluate(test_images, test_labels)
print(f'Test accuracy: {test_acc * 100:.2f}%')

3.剪枝

剪枝是我在研究生论文中研究过的一种模型压缩方法,事实上,我之前曾发表过一篇关于如何在Julia中实现剪枝的文章:Julia中用于人工神经网络的迭代剪枝方法。

剪枝是为了解决决策树中的过拟合问题而诞生的,实际上是通过剪掉树的分支来减小树的深度。该概念后来被用于神经网络,其中会删除网络中的边和/或节点(取决于是否执行非结构化剪枝或结构化剪枝)。

深度学习之模型压缩、加速模型推理

假设要从网络中删除整个节点,表示层的矩阵将变小,因此您的模型也会变小,因此也会变快。相反,如果我们删除单个边,矩阵的大小将保持不变,但是我们将在删除的边的位置放置零,因此我们将获得非常稀疏的矩阵。因此,在非结构化剪枝中,优势不在于增加速度,而在于内存,因为将稀疏矩阵保存在内存中比保存密集矩阵要占用更少的空间。

但我们要剪枝的是哪些节点或边呢?通常是最不必要的节点或边,推荐大家可以研究下下面两篇论文:《Optimal Brain Damage》和《Optimal Brain Surgeon and general network pruning》。

让我们看一个如何在简单的MNIST模型中实现剪枝的Python脚本。

import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.datasets import mnist
from tensorflow.keras.utils import to_categorical
from tensorflow_model_optimization.sparsity import keras as sparsity
import numpy as np

# Load the MNIST dataset
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

# Preprocess the data
train_images = train_images.reshape((60000, 28, 28, 1)).astype('float32') / 255
test_images = test_images.reshape((10000, 28, 28, 1)).astype('float32') / 255
train_labels = to_categorical(train_labels)
test_labels = to_categorical(test_labels)

# Create a simple neural network model
def create_model():
    model = Sequential([
        tf.keras.layers.Flatten(input_shape=(28, 28, 1)),
        tf.keras.layers.Dense(128, activation='relu'),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(64, activation='relu'),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation='softmax')
    ])
    return model

# Create and compile the original model
model = create_model()
model.compile(optimizer='adam',
              loss='categorical_crossentropy',
              metrics=['accuracy'])

# Train the original model
model.fit(train_images, train_labels, epochs=5, batch_size=64, validation_split=0.2)

# Prune the model
# Specify the pruning parameters
pruning_params = {
    'pruning_schedule': sparsity.PolynomialDecay(initial_sparsity=0.50,
                                                 final_sparsity=0.90,
                                                 begin_step=0,
                                                 end_step=2000,
                                                 frequency=100)
}

# Create a pruned model
pruned_model = sparsity.prune_low_magnitude(create_model(), **pruning_params)

# Compile the pruned model
pruned_model.compile(optimizer='adam',
                     loss='categorical_crossentropy',
                     metrics=['accuracy'])

# Train the pruned model (fine-tuning)
pruned_model.fit(train_images, train_labels, epochs=2, batch_size=64, validation_split=0.2)

# Strip pruning wrAppers to create a smaller and faster model
final_model = sparsity.strip_pruning(pruned_model)

# Evaluate the final pruned model
test_loss, test_acc = final_model.evaluate(test_images, test_labels)
print(f'Test accuracy after pruning: {test_acc * 100:.2f}%')

量化

我认为没有错的说量化可能是目前最广泛使用的压缩技术。同样,基本思想很简单。通常,我们使用32位浮点数表示神经网络的参数。但如果我们使用更低精度的数值呢?我们可以使用16位、8位、4位,甚至1位,并且拥有二进制网络!

这意味着什么?通过使用较低精度的数字,模型将更轻,更小,但也会失去精度,提供比原始模型更近似的结果。当我们需要在边缘设备上部署时,特别是在某些特殊硬件上,如智能手机上,这是一种经常使用的技术,因为它允许我们大大缩小网络的大小。许多框架允许轻松应用量化,例如TensorFlow Lite、PyTorch或TensorRT。

量化可以在训练前应用,因此我们直接截断了一个网络,其参数只能在某个范围内取值,或者在训练后应用,因此最终会对参数的值进行四舍五入。在这里,我们再次快速看一下如何在Python中应用量化。


import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten, Dropout
from tensorflow.keras.datasets import mnist
from tensorflow.keras.utils import to_categorical
import numpy as np

# Load the MNIST dataset
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

# Preprocess the data
train_images = train_images.reshape((60000, 28, 28, 1)).astype('float32') / 255
test_images = test_images.reshape((10000, 28, 28, 1)).astype('float32') / 255
train_labels = to_categorical(train_labels)
test_labels = to_categorical(test_labels)

# Create a simple neural network model
def create_model():
    model = Sequential([
        Flatten(input_shape=(28, 28, 1)),
        Dense(128, activation='relu'),
        Dropout(0.2),
        Dense(64, activation='relu'),
        Dropout(0.2),
        Dense(10, activation='softmax')
    ])
    return model

# Create and compile the original model
model = create_model()
model.compile(optimizer='adam',
              loss='categorical_crossentropy',
              metrics=['accuracy'])

# Train the original model
model.fit(train_images, train_labels, epochs=5, batch_size=64, validation_split=0.2)

# Quantize the model to 8-bit integers
converter = tf.lite.TFLiteConverter.from_keras_model(model)
converter.optimizations = [tf.lite.Optimize.DEFAULT]
quantized_model = converter.convert()

# Save the quantized model to a file
with open('quantized_model.tflite', 'wb') as f:
    f.write(quantized_model)

# Load the quantized model for inference
interpreter = tf.lite.Interpreter(model_path='quantized_model.tflite')
interpreter.allocate_tensors()

# Evaluate the quantized model
test_loss, test_acc = 0.0, 0.0
for i in range(len(test_images)):
    input_data = np.array([test_images[i]], dtype=np.float32)
    interpreter.set_tensor(interpreter.get_input_details()[0]['index'], input_data)
    interpreter.invoke()
    output_data = interpreter.get_tensor(interpreter.get_output_details()[0]['index'])
    test_loss += tf.keras.losses.categorical_crossentropy(test_labels[i], output_data).numpy()
    test_acc += np.argmax(test_labels[i]) == np.argmax(output_data)

test_loss /= len(test_images)
test_acc /= len(test_images)

print(f'Test accuracy after quantization: {test_acc * 100:.2f}%')

结论

在本文中,我们探讨了几种模型压缩方法,以加速模型推断阶段,这对于生产中的模型来说可能是一个关键要求。特别是,我们关注了低秩分解、知识蒸馏、剪枝和量化等方法,解释了基本思想,并展示了Python中的简单实现。模型压缩对于在具有有限资源(RAM、GPU等)的特定硬件上部署模型也非常有用,比如智能手机。



Tags:深度学习   点击:()  评论:()
声明:本站部分内容及图片来自互联网,转载是出于传递更多信息之目的,内容观点仅代表作者本人,不构成投资建议。投资者据此操作,风险自担。如有任何标注错误或版权侵犯请与我们联系(Email:2595517585@qq.com),我们将及时更正、删除。
▌相关推荐
深度学习之模型压缩、加速模型推理
简介当将一个机器学习模型部署到生产环境中时,通常需要满足一些在模型原型阶段没有考虑到的要求。例如,在生产中使用的模型将不得不处理来自不同用户的大量请求。因此,您将希望...【详细内容】
2023-11-20  Tags: 深度学习  点击:(0)  评论:(0)  加入收藏
深度学习模型与人类认知的对比与解释
深度学习模型是近年来人工智能领域的热门研究方向,其在图像识别、自然语言处理等任务上取得了令人瞩目的成果。然而,与人类认知相比,深度学习模型仍存在一些差距。本文将探讨深...【详细内容】
2023-11-17  Tags: 深度学习  点击:(7)  评论:(0)  加入收藏
超大规模数据下的分布式深度学习模型训练技术
随着互联网和物联网的快速发展,数据规模呈现爆炸式增长。在这样的背景下,如何高效地训练深度学习模型成为了一个亟待解决的问题。传统的深度学习模型训练方式往往需要大量的计...【详细内容】
2023-11-08  Tags: 深度学习  点击:(8)  评论:(0)  加入收藏
多层感知机在深度学习中的作用
深度学习作为一种强大的机器学习技术,已经在各个领域取得了显著的成果。而多层感知机(MultilayerPerceptron,MLP)作为深度学习的基础模型之一,发挥着重要的作用。本文将介绍多层...【详细内容】
2023-11-08  Tags: 深度学习  点击:(9)  评论:(0)  加入收藏
异步分布式深度学习训练的算法与系统优化
深度学习在近年来取得了巨大的成功,但随着模型的不断增大和数据的不断增加,传统的单机训练已经无法满足需求。为了加速深度学习训练过程,异步分布式深度学习训练成为了一种重要...【详细内容】
2023-11-06  Tags: 深度学习  点击:(3)  评论:(0)  加入收藏
深度学习在集群机器人行为规划中的应用
随着科技的迅猛发展,深度学习在人工智能领域扮演着越来越重要的角色。其中,深度学习在集群机器人行为规划中的应用引起了广泛的关注。集群机器人是指由多个智能机器人协同工作...【详细内容】
2023-11-01  Tags: 深度学习  点击:(24)  评论:(0)  加入收藏
人机协同决策:深度学习与人类智慧的结合
人工智能技术的快速发展,使得AI系统在许多领域都取得了重大突破。然而,AI系统仍然存在一些局限性,如缺乏常识推理能力、缺乏人类的主观判断和价值观等。因此,人机协同决策成为了...【详细内容】
2023-11-01  Tags: 深度学习  点击:(35)  评论:(0)  加入收藏
基于深度学习的视频内容理解技术探索
随着深度学习技术的快速发展,基于深度学习的视频内容理解技术在计算机视觉领域引起了广泛关注。视频内容理解是指通过对视频进行分析和处理,使计算机能够理解和解释视频中的内...【详细内容】
2023-10-12  Tags: 深度学习  点击:(58)  评论:(0)  加入收藏
深度学习算法:从模仿到创造
深度学习是一种受到生物学启发的机器学习方法,其目标是通过构建多层神经网络来模拟人脑的工作原理。它在过去几十年来取得了巨大的进展,并在图像识别、语音识别、自然语言处理...【详细内容】
2023-10-12  Tags: 深度学习  点击:(59)  评论:(0)  加入收藏
深度学习带来的图像识别革命
深度学习是近年来最热门的人工智能分支之一,它以其优秀的特征提取和模型拟合能力,为图像识别领域带来了革命性的变化。深度学习通过搭建复杂的神经网络模型,利用大量数据进行训...【详细内容】
2023-10-12  Tags: 深度学习  点击:(60)  评论:(0)  加入收藏
▌简易百科推荐
深度学习之模型压缩、加速模型推理
简介当将一个机器学习模型部署到生产环境中时,通常需要满足一些在模型原型阶段没有考虑到的要求。例如,在生产中使用的模型将不得不处理来自不同用户的大量请求。因此,您将希望...【详细内容】
2023-11-20  小白玩转Python  微信公众号  Tags:深度学习   点击:(0)  评论:(0)  加入收藏
聊聊接口最大并发处理数
今天跟大家聊聊一个 Java 界的老话题,就是怎么理解接口的最大并发处理数。前言生活在 2023 年的互联网时代下,又是在国内互联网越发内卷的背景下,相信大家面试找工作、网上学习...【详细内容】
2023-11-20  waynblog  微信公众号  Tags:接口   点击:(2)  评论:(0)  加入收藏
通过实例理解Web应用跨域问题
在开发Web应用的过程中,我们经常会遇到所谓“跨域问题(Cross Origin Problem)”。跨域问题是由于浏览器的同源策略(Same-origin policy)[1]导致的,它限制了不同源(Origin:域名...【详细内容】
2023-11-20  TonyBai  微信公众号  Tags:Web应用   点击:(2)  评论:(0)  加入收藏
深入理解CPU缓存一致性协议MESI
今天,我们就深入聊聊关于CPU缓存一致性协议MESI的有关知识,希望能够为小伙伴们带来实质性的帮助。好了,不多说了,进入今天的正题。CPU高速缓存CPU为何要有高速缓存CPU在摩尔定律...【详细内容】
2023-11-20  冰河技术  微信公众号  Tags:CPU缓存   点击:(2)  评论:(0)  加入收藏
解密 SSE,像 ChatGPT 一样返回流式响应
我们知道目前的 HTTP/1.1 采用的是标准的请求-响应模型,客户端主动发请求,服务端被动地返回响应。这种模型在客户端需要实时获取结果的场景下是不合适的,因为这意味着客户端需...【详细内容】
2023-11-20  古明地觉的编程教室  微信公众号  Tags:ChatGPT   点击:(3)  评论:(0)  加入收藏
RabbitMQ插件开发指南:定制化你的消息队列
RabbitMQ是一个功能强大的消息队列系统,它提供了灵活的插件机制,使用户能够定制化自己的消息队列。下面将为您介绍RabbitMQ插件开发的指南,让您能够根据自己的需求编写定制化的...【详细内容】
2023-11-20  编程技术汇  今日头条  Tags:RabbitMQ   点击:(4)  评论:(0)  加入收藏
读懂这一篇,集群节点不下线
问题一直在发生1. I'm NotReady阿里云有自己的 Kubernetes 容器集群产品。随着 Kubernetes 集群出货量的剧增,线上用户零星的发现,集群会非常低概率地出现节点 NotReady...【详细内容】
2023-11-20    云原生运维圈  Tags:集群   点击:(2)  评论:(0)  加入收藏
GitHub:程序员正积极使用 AI 编程、JavaScript 语言依然最流行
IT之家 11 月 20 日消息,GitHub 发布了 2023 年度 Octoverse 开源状态报告,其中主要强调了 AI 在开发过程中的作用,并围绕云和 Git 的开源活动展开。官方介绍称,今年的三大趋势...【详细内容】
2023-11-20    IT之家  Tags:AI 编程   点击:(3)  评论:(0)  加入收藏
分片并不意味着分布式
Sharding(分片)是一种将数据和负载分布到多个独立的数据库实例的技术。这种方法通过将原始数据集分割为分片来利用水平可扩展性,然后将这些分片分布到多个数据库实例中。1*yg3P...【详细内容】
2023-11-20  小技术君  微信公众号  Tags:分布式   点击:(4)  评论:(0)  加入收藏
Angular怎么还没死
作者丨Mohit Pandey编译丨诺亚出品 | 51CTO技术栈(微信号:blog51cto)Angular已经完全改版了。“欢迎来到Angular的复兴,”Angular官方在X(twitter)上发布了这样一条帖子。图片正如...【详细内容】
2023-11-20    51CTO  Tags:Angular   点击:(4)  评论:(0)  加入收藏
站内最新
站内热门
站内头条