您当前的位置:首页 > 电脑百科 > 程序开发 > 架构

HashMap的底层数据结构

时间:2023-09-15 13:32:19  来源:今日头条  作者:微风01
在 JDK1.8 中,HashMap 还引入了一个新的概念,叫做负载因子(load factor),它是指哈希表中键值对的数量与数组长度的比值。当键值对的数量超过了负载因子与数组长度的乘积时,就会触发扩容操作,HashMap 会自动将数组长度扩大一倍,并将原来的键值对重新分配到新的数组中。这样做的目的是为了保证散列表的性能,因为当负载因子过高时,散列表的性能会急剧下降。

一、HashMap基础机构

HashMap 由数组和链表(或红黑树)组成。数组是 HashMap 的主体,链表和红黑树则是为了解决哈希冲突而存在的。数组中的每个元素都是一个单向链表的头结点,每个链表都是由若干个 Node 节点组成的,每个节点都包含了键值对的信息,以及指向下一个节点的指针。当多个键映射到同一个位置时,它们会被存储在同一个链表中(或者是同一个红黑树中)。当链表长度超过阈值(默认为 8)时,链表就会被转换成红黑树,这样可以提高查找效率。

在 JDK1.8 中,HashMap 还引入了一个新的概念,叫做负载因子(load factor),它是指哈希表中键值对的数量与数组长度的比值。当键值对的数量超过了负载因子与数组长度的乘积时,就会触发扩容操作,HashMap 会自动将数组长度扩大一倍,并将原来的键值对重新分配到新的数组中。这样做的目的是为了保证散列表的性能,因为当负载因子过高时,散列表的性能会急剧下降。

二、HashMap的底层数据结构

解答:在jdk1.8以前,HashMa采用链表+数组,自Jdk1.8以后,HashMap采用链表+数组+红黑树。在下图中横链(0-15)表中表示数组,竖(1-8)表示链表,在数组长度超过8之后,hashmap将数组自动转为红黑树。

HashMapJDK1.8链表和红黑树转化

三、JDK1.8对hash算法和寻址算法如何优化的?

1、对Hash值算法的优化

static final int hash(Object key) {
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }

有一个key的Hash_1值:

Hash_1: 1111 1111 1111 1111 1111 1010 0111 1100
 
h >>> 16 // 表示对该hash值右移16位

右移后的结果Hash_2为:

Hash_2: 0000 0000 0000 0000 1111 1111 1111 1111

对上述Hash_1和Hash_2的两个值进行异或

Hash_1: 1111 1111 1111 1111 1111 1010 0111 1100
Hash_2: 0000 0000 0000 0000 1111 1111 1111 1111
=====>: 1111 1111 1111 1111 0000 0101 1000 0011 =====> 转为10进制int值,这个值就是这个key的hash值

hash算法的优化:对每个hash值,在它的低16位中,让高低16位进行异或,让它的低16位同时保持了高低16位的特征,尽量避免一些hash值后续出现冲突,大家可能会进入数组的同一位置。

2、对寻址算法的优化

(p = tab[i = (n - 1) & hash] 
 
 // (n-1) & hash ==> 数组里的一个位置

hash & (n-1) 效果是跟hash对n取模是一样的,但是与运算的性能要比hash对n取模要高很多。数组的长度会一直是2的n次方,只要他保持数组长度是2的n次方。

  • 寻址为什么不用取模?

对于上面寻址算法,由于计算机对比取模,与运算会更快。所以为了效率,HashMap 中规定了哈希表长度为 2 的 k 次方,而 2^k-1 转为二进制就是 k 个连续的 1,那么 hash & (k 个连续的 1) 返回的就是 hash 的低 k 个位,该计算结果范围刚好就是 0 到 2^k-1,即 0 到 length - 1,跟取模结果一样。

也就是说,哈希表长度 length 为 2 的整次幂时, hash & (length - 1) 的计算结果跟 hash % length 一样,而且效率还更好。

  • 为什么不直接用 hashCode() 而是用它的高 16 位进行异或计算新 hash 值?#

int 类型占 32 位,可以表示 2^32 种数(范围:-2^31 到 2^31-1),而哈希表长度一般不大,在 HashMap 中哈希表的初始化长度是 16(HashMap 中的 DEFAULT_INITIAL_CAPACITY),如果直接用 hashCode 来寻址,那么相当于只有低 4 位有效,其他高位不会有影响。这样假如几个 hashCode 分别是 210、220、2^30,那么寻址结果 index 就会一样而发生冲突,所以哈希表就不均匀分布了。

寻址算法的优化:用与运算替代取模,提升性能。(由于计算机对比取模,与运算会更快)

四、HashMap是如何解决hash碰撞问题

hash冲突问题,链表+红黑树,O(n)和O(logN)。

hashmap采用的就是链地址法(拉链法),jdk1.7中,当冲突时,在冲突的地址上生成一个链表,将冲突的元素的key,通过equals进行比较,相同即覆盖,不同则添加到链表上,此时如果链表过长,效率就会大大降低,查找和添加操作的时间复杂度都为O(n);但是在jdk1.8中如果链表长度大于8,链表就会转化为红黑树,时间复杂度也降为了O(logn),性能得到了很大的优化。

HashMapJDK1.8链表和红黑树转化

五、HashMap是如何进行扩容的

HashMap底层是一个数组,当这个数组满了之后,他就会自动进行扩容,变成一个更大数组。

1、JDK1.7下的扩容机制

void resize(int newCapacity) {
        Entry[] oldTable = table;
        int oldCapacity = oldTable.length;
        if (oldCapacity == MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;
            return;
        }
 
        Entry[] newTable = new Entry[newCapacity];
        transfer(newTable, initHashSeedAsNeeded(newCapacity));
        table = newTable;
        threshold = (int)Math.min(newCapacity * loadFactor, MAXIMUM_CAPACITY + 1);
    }

代码中可以看到,如果原有table长度已经达到了上限,就不再扩容了。如果还未达到上限,则创建一个新的table,并调用transfer方法:

/**
     * Transfers all entries from current table to newTable.
     */
    void transfer(Entry[] newTable, boolean rehash) {
        int newCapacity = newTable.length;
        for (Entry<K,V> e : table) {
            while(null != e) {
                Entry<K,V> next = e.next;              //注释1
                if (rehash) {
                    e.hash = null == e.key ? 0 : hash(e.key);
                }
                int i = indexFor(e.hash, newCapacity); //注释2
                e.next = newTable[i];                  //注释3
                newTable[i] = e;                       //注释4
                e = next;                              //注释5
            }
        }
    }

transfer方法的作用是把原table的Node放到新的table中,使用的是头插法,也就是说,新table中链表的顺序和旧列表中是相反的,在HashMap线程不安全的情况下,这种头插法可能会导致环状节点。

2、JDK1.8下的扩容机制

源码如下:

final Node<K,V>[] resize() {
        Node<K,V>[] oldTab = table;
        int oldCap = (oldTab == null) ? 0 : oldTab.length; // 记录原来的数组长度
        int oldThr = threshold;
        int newCap, newThr = 0;
        if (oldCap > 0) {
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold // 重新计算TREEIFY_THRESHOLD
        }
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
        else {               // zero initial threshold signifies using defaults
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
            Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
        if (oldTab != null) {  // 重新计算原来链表中的值的hash值在新表对应的hash值
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    if (e.next == null)  // 如果元素e的下一个位置没有值,则说明可以存放元素
                        newTab[e.hash & (newCap - 1)] = e; 
                    else if (e instanceof TreeNode) // 如果已经是红黑树的节点,那就对其重新划分
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // preserve order
                        // loHead: 下标不变情况下的链表头
                        // loTAIl: 下标不变情况下的链表尾
                        // hiHead: 下标改变情况下的链表头
                        // hiTail: 下标改变情况下的链表尾
                        // 如果
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) { // 元素e的最新hash如果与原来的值与计算之后如果值为0,就说明是使用原来的index
                                // 尾插法插入元素e
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                // 与运算不等于0则说明使用新的index
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

正常情况下,计算节点在table中的下标的方法是:hash&(oldTable.length-1),扩容之后,table长度翻倍,计算table下标的方法是hash&(newTable.length-1),也就是hash&(oldTable.length*2-1),于是我们有了这样的结论:这新旧两次计算下标的结果,要不然就相同,要不然就是新下标等于旧下标加上旧数组的长度。

数组长度为16时,有两个keyA和keyB。

KeyA:
n-1:   0000 0000 0000 0000 0000 0000 0000 1111
hash1: 1111 1111 1111 1111 0000 1111 0000 0101
&结果:  0000 0000 0000 0000 0000 0000 0000 0101 = 5

KeyB:
n-1:   0000 0000 0000 0000 0000 0000 0000 1111 
hash1: 1111 1111 1111 1111 0000 1111 0001 0101
&结果:  0000 0000 0000 0000 0000 0000 0000 0101 = 5

在数组长度为16的时候,他们两个hash值冲突会使用拉链发解决冲突。

当数组长度扩容到32之后,需要重新对每个hash值进行寻址,也就是每个hash值跟新的数组length-1 进行操作。

KeyA:
n-1:   0000 0000 0000 0000 0000 0000 000*1* 1111
hash1: 1111 1111 1111 1111 0000 1111 0000 0101
&结果:  0000 0000 0000 0000 0000 0000 0000 0101 = 5

KeyB:
n-1:   0000 0000 0000 0000 0000 000*1* 0000 1111 
hash1: 1111 1111 1111 1111 0000 1111 0001 0101
&结果:  0000 0000 0000 0000 0000 000*1* 0000 0101 = 21

判断二进制结果是否多出一个bit的1,如果没有多,那就用原来的index,如果多出来了那就用index+oldCap,通过这个方式,避免了rehash的时候,用每个hash对新数组的length取模,取模性能不高,位运算性能比较高。



Tags:HashMap   点击:()  评论:()
声明:本站部分内容及图片来自互联网,转载是出于传递更多信息之目的,内容观点仅代表作者本人,不构成投资建议。投资者据此操作,风险自担。如有任何标注错误或版权侵犯请与我们联系(Email:2595517585@qq.com),我们将及时更正、删除。
▌相关推荐
在 JDK1.8 中,HashMap 还引入了一个新的概念,叫做负载因子(load factor),它是指哈希表中键值对的数量与数组长度的比值。当键值对的数量超过了负载因子与数组长度的乘积时,就会...【详细内容】
2023-09-15  Tags: HashMap  点击:(0)  评论:(0)  加入收藏
HashMap 是一种散列表,它存储的内容是键值对(key-value)映射。在 HashMap 中,每个键(key)映射到一个值(value)。散列表的工作原理是:当通过 put() 方法将键值对存储在 HashMap...【详细内容】
2023-09-14  Tags: HashMap  点击:(2)  评论:(0)  加入收藏
前言 今天来分享一道比较好的面试题,“HashMap 是怎么解决哈希冲突的?”对于这个问题,我们一起看看考察点和比较好的回答吧!考察点 现在的企业级开发中HashMap几乎是...【详细内容】
2023-09-11  Tags: HashMap  点击:(2)  评论:(0)  加入收藏
HashMap线程不安全体现在哪里?如果你到现在还不清楚赶紧看下去,明明白白补一补~。在Java中,HashMap是一种常用的数据结构,它以键值对的形式存储和管理数据。然而,由于HashMap在...【详细内容】
2023-04-27  Tags: HashMap  点击:(117)  评论:(0)  加入收藏
要实现线程安全的 HashMap,可以考虑以下几种方法: 使用 ConcurrentHashMap:ConcurrentHashMap 是线程安全的 HashMap 实现,采用了分段锁的机制,可以提高并发性能。 使用 Collecti...【详细内容】
2023-03-21  Tags: HashMap  点击:(221)  评论:(0)  加入收藏
HashMap 死循环发生在 JDK 1.7 版本中,形成死循环的原因是 HashMap 在 JDK 1.7 使用的是头插法,头插法 + 链表 + 多线程并发 + HashMap 扩容,这几个点加在一起就形成了 HashMap...【详细内容】
2023-01-31  Tags: HashMap  点击:(136)  评论:(0)  加入收藏
写在前面最近有很多的粉丝私信我,说自己在面试的时候,老是被人问HashMap的原理,但是在实际的工作中,也只是使用HashMap,从来就没有关注过它的原来,今天博主本人,根据自己的实际经验...【详细内容】
2022-09-08  Tags: HashMap  点击:(145)  评论:(0)  加入收藏
1、HashMap主要成员变量size 记录了 Map 中 KV 对的个数。loadFactor 装载印子,用来衡量 HashMap 满的程度。loadFactor 的默认值为 0.75f。threshold 临界值,当实际 KV 个数...【详细内容】
2021-06-08  Tags: HashMap  点击:(434)  评论:(0)  加入收藏
场景描述我们在日常学习和研发中,经常会接触一些底层的源码,有些同学在遇到位运算(提高系统的运行效率)实现的方法时,读起来就有些吃力了,例如HashMap类中的tableSizeFor(int cap...【详细内容】
2021-04-06  Tags: HashMap  点击:(383)  评论:(0)  加入收藏
前言本文咱们了解一下红黑树的设计,相比 jdk1.7 的 HashMap 而言,jdk1.8 最重要的就是引入了红黑树的设计,当冲突的链表长度超过 8 个的时候,链表结构就会转为红黑树结构。01、...【详细内容】
2021-01-18  Tags: HashMap  点击:(269)  评论:(0)  加入收藏
▌简易百科推荐
在 JDK1.8 中,HashMap 还引入了一个新的概念,叫做负载因子(load factor),它是指哈希表中键值对的数量与数组长度的比值。当键值对的数量超过了负载因子与数组长度的乘积时,就会...【详细内容】
2023-09-15  微风01  今日头条  Tags:HashMap   点击:(0)  评论:(0)  加入收藏
环境:SpringBoot2.5.13Spring Cloud Gateway提供了一个名为ProxyExchange的实用程序对象。你可以在常规Spring web处理程序中使用它作为方法参数。它通过镜像HTTP动词的方法...【详细内容】
2023-09-15   Spring全家桶实战案例源码    Tags:Spring Cloud   点击:(0)  评论:(0)  加入收藏
在 Spring Boot 中,拦截器和动态代理都是用来实现功能增强的,所以在很多时候,有人会认为拦截器的底层是通过动态代理实现的,所以本文就来盘点一下他们两的区别,以及拦截器的底层...【详细内容】
2023-09-15  Java中文社群  微信公众号  Tags:SpringBoot   点击:(1)  评论:(0)  加入收藏
1 判断类型注入的属性判断其类型: Optional ObjectFactory ObjectProvider javax.inject.Providerpublic class DefaultListableBeanFactory extends AbstractAutowireCapabl...【详细内容】
2023-09-14  Spring全家桶实战案例源码    Tags:Spring   点击:(1)  评论:(0)  加入收藏
RestTemplate是Spring提供的用于访问Rest服务的客户端,RestTemplate提供了多种便捷访问远程Http服务的方法,能够大大提高客户端的编写效率。我之前的HTTP开发是用apache的Htt...【详细内容】
2023-09-14  PlayInJava  今日头条  Tags:Springboot   点击:(4)  评论:(0)  加入收藏
本文目录- 说在前面- 喜马拉雅自研亿级API网关技术实践- 1、第1版:Tomcat NIO+Async Servlet- 2、第2版:Netty+全异步 - 2.1 接入层 - 2.2 业务逻辑层 - 2.3 服务调用层...【详细内容】
2023-09-14  技术老男孩  微信公众号  Tags:架构设计   点击:(0)  评论:(0)  加入收藏
1、含义不同微服务架构是一种将一个单一应用程序开发为一组小型服务的方法,每个服务运行在自己的进程中。分布式系统是若干独立计算机的集合,这些计算机对用户来说就像单个相...【详细内容】
2023-09-13  AI改变你我  微信公众号  Tags:架构   点击:(4)  评论:(0)  加入收藏
分布式锁是一种用于保证分布式系统中多个进程或线程同步访问共享资源的技术。同时它又是面试中的常见问题,所以我们本文就重点来看分布式锁的具体实现(含实现代码)。在分布式系...【详细内容】
2023-09-13  Java中文社群    Tags:分布式锁   点击:(0)  评论:(0)  加入收藏
大家好,我是不才陈某~在排查线上异常的过程中,查询日志总是必不可缺的一部分。现今大多采用的微服务架构,日志被分散在不同的机器上,使得日志的查询变得异常困难。工欲善其事,必...【详细内容】
2023-09-13  码猿技术专栏  微信公众号  Tags:Spring Boot   点击:(5)  评论:(0)  加入收藏
分布式锁是一种用于保证分布式系统中多个进程或线程同步访问共享资源的技术。同时它又是面试中的常见问题,所以我们本文就重点来看分布式锁的具体实现(含实现代码)。在分布式系...【详细内容】
2023-09-13    Java中文社群  Tags:分布式锁   点击:(4)  评论:(0)  加入收藏
站内最新
站内热门
站内头条