您当前的位置:首页 > 电脑百科 > 程序开发 > 算法

降维算法:主成分分析 VS 自动编码器

时间:2020-06-28 11:18:28  来源:  作者:
降维算法:主成分分析 VS 自动编码器

 

降维是一种减少特征空间维度以获得稳定的、统计上可靠的机器学习模型的技术。降维主要有两种途径:特征选择和特征变换。

特征选择通过选择重要程度最高的若干特征,移除共性的或者重要程度较低的特征。

特征转换也称为特征提取,试图将高维数据投影到低维空间。一些特征转换技术有主成分分析(PCA)、矩阵分解、自动编码器(Autoencoders)、t-Sne、UMAP等。

本文主要介绍了主成分分析以及自动编码器两种方法,具体分析两者的优缺点,并且通过一个生动的示例进行详解。

主成分分析

主成分分析是一种无监督技术,将原始数据投影到若干高方差方向(维度)。这些高方差方向彼此正交,因此投影数据的相关性非常低或几乎接近于 0。这些特征转换是线性的,具体方法是:

步骤一:计算相关矩阵数据,相关矩阵的大小为 n*n。

步骤二:计算矩阵的特征向量和特征值。

步骤三:选取特征值较高的 k 个特征向量作为主方向。

步骤四:将原始数据集投影到这 k 个特征向量方向,得到 k 维数据,其中 k≤n。

自动编码器

自动编码器是一种无监督的人工神经网络,它将数据压缩到较低的维数,然后重新构造输入。自动编码器通过消除重要特征上的噪声和冗余,找到数据在较低维度的表征。它基于编解码结构,编码器将高维数据编码到低维,解码器接收低维数据并尝试重建原始高维数据。

降维算法:主成分分析 VS 自动编码器

 

自动编码器基本结构示意图

降维算法:主成分分析 VS 自动编码器

 

深层自动编码器结构示意图

上图中, X 是输入数据,z 是 X 在低维空间的数据表征,X' 是重构得到的数据。根据激活函数的不同,数据从高纬度到低纬度的映射可以是线性的,也可以是非线性的。

性能对比:主成分分析 VS 自动编码器

1. PCA 只能做线性变换;而自动编码器既可以做线性变换,也可以做非线性变换。

1. 由于既有的 PCA 算法是十分成熟的,所以计算很快;而自动编码器需要通过梯度下降算法进行训练,所以需要花费更长的时间。

1. PCA 将数据投影到若干正交的方向;而自动编码器降维后数据维度并不一定是正交的。

1. PCA 是输入空间向最大变化方向的简单线性变换;而自动编码器是一种更复杂的技术,可以对相对复杂的非线性关系进行建模。

1. 依据经验来看,PCA 适用于数据量较小的场景;而自动编码器可以用于复杂的大型数据集。

1. PCA 唯一的超参数是正交向量的数量;而自动编码器的超参数则是神经网络的结构参数。

1. 单层的并且采用线性函数作为激活函数的自动编码器与 PCA 性能一致;但是多层的以非线性函数作为激活函数的自动编码器(深度自动编码器)能够具有很好的性能,虽然可能会存在过拟合,但是可以通过正则化等方式进行解决。

降维示例:图像数据

降维算法:主成分分析 VS 自动编码器

 

示例图片

该示例图片的数据维度为 360*460。我们将尝试通过 PCA 和自动编码器将数据规模降低为原有的 10%。

PCA 方法

pct_reduction = 0.10
reduced_pixel  = int( pct_reduction* original_dimensions[1])
#Applying PCA
pca = PCA(n_components=reduced_pixel)
pca.fit(image_matrix)
#Transforming the input matrix
X_transformed = pca.transform(image_matrix)
print("Original Input dimesnions {}".format(original_dimensions))
print("New Reduced dimensions {}".format(X_transformed.shape))

输出如下:

Original Input dimesnions (360, 460)
New Reduced dimensions (360, 46)

检查各维度的相关性:

df_pca = pd.DataFrame(data = X_transformed,columns=list(range(X_transformed.shape[1])))
figure = plt.figure(figsize=(10,6))
corrMatrix = df_pca.corr()
sns.heatmap(corrMatrix, annot=False)
plt.show()
降维算法:主成分分析 VS 自动编码器

 

PCA降维后各维度相关性

从上图可以看出,PCA 降维后各个维度都是不相关的,也就是完全正交。

接下来,我们通过降维后的数据来重构原始数据:

reconstructed_matrix = pca.inverse_transform(X_transformed)
reconstructed_image_pca = Image.fromarray(np.uint8(reconstructed_matrix))
plt.figure(figsize=(8,12))
plt.imshow(reconstructed_image_pca,cmap = plt.cm.gray)
降维算法:主成分分析 VS 自动编码器

 

PCA 图像重构

计算重构后图像的均方根误差:

def my_rmse(np_arr1,np_arr2):
    dim = np_arr1.shape
    tot_loss = 0
    for i in range(dim[0]):
        for j in range(dim[1]):
            tot_loss += math.pow((np_arr1[i,j] - np_arr2[i,j]),2)
    return round(math.sqrt(tot_loss/(dim[0]* dim[1]*1.0)),2)
error_pca = my_rmse(image_matrix,reconstructed_matrix)

计算可知,均方根误差为11.84。

单层的以线性函数作为激活函数的自动编码器

# Standarise the Data
X_org = image_matrix.copy()
sc = StandardScaler()
X = sc.fit_transform(X_org)
# this is the size of our encoded representations
encoding_dim = reduced_pixel 
# this is our input placeholder
input_img = Input(shape=(img.width,))
# "encoded" is the encoded representation of the input
encoded = Dense(encoding_dim, activation='linear')(input_img)
# "decoded" is the lossy reconstruction of the input
decoded = Dense(img.width, activation=None)(encoded)
# this model maps an input to its reconstruction
autoencoder = Model(input_img, decoded)
#Encoder
encoder = Model(input_img, encoded)
# create a placeholder for an encoded (32-dimensional) input
encoded_input = Input(shape=(encoding_dim,))
# retrieve the last layer of the autoencoder model
decoder_layer = autoencoder.layers[-1]
# create the decoder model
decoder = Model(encoded_input, decoder_layer(encoded_input))
autoencoder.compile(optimizer='adadelta', loss='mean_squared_error')
autoencoder.fit(X, X,
                epochs=500,
                batch_size=16,
                shuffle=True)
encoded_imgs = encoder.predict(X)
decoded_imgs = decoder.predict(encoded_imgs)
降维算法:主成分分析 VS 自动编码器

 

自动编码器结构

检查各维度的相关性:

df_ae = pd.DataFrame(data = encoded_imgs,columns=list(range(encoded_imgs.shape[1])))
figure = plt.figure(figsize=(10,6))
corrMatrix = df_ae.corr()
sns.heatmap(corrMatrix, annot=False)
plt.show()
降维算法:主成分分析 VS 自动编码器

 

自动编码器降维后各维度相关性

相关矩阵表明新的变换特征具有一定的相关性。皮尔逊相关系数与0有很大的偏差。

接下来,我们通过降维后的数据来重构原始数据:

X_decoded_ae = sc.inverse_transform(decoded_imgs)
reconstructed_image_ae = Image.fromarray(np.uint8(X_decoded_ae))
plt.figure(figsize=(8,12))
plt.imshow(reconstructed_image_ae,cmap = plt.cm.gray)
降维算法:主成分分析 VS 自动编码器

 

自动编码器重构后的图像

计算重构后图像的均方根误差:

error_ae = my_rmse(image_matrix,X_decoded_ae)

计算可知,均方根误差为12.15。单层线性激活的自动编码器和 PCA 性能几乎一致。

三层的以非线性函数为激活函数的自动编码器

input_img = Input(shape=(img.width,))
encoded1 = Dense(128, activation='relu')(input_img)
encoded2 = Dense(reduced_pixel, activation='relu')(encoded1)
decoded1 = Dense(128, activation='relu')(encoded2)
decoded2 = Dense(img.width, activation=None)(decoded1)
autoencoder = Model(input_img, decoded2)
autoencoder.compile(optimizer='adadelta', loss='mean_squared_error')
autoencoder.fit(X,X,
                epochs=500,
                batch_size=16,
                shuffle=True)
# Encoder
encoder = Model(input_img, encoded2)
# Decoder
decoder = Model(input_img, decoded2)
encoded_imgs = encoder.predict(X)
decoded_imgs = decoder.predict(X)
降维算法:主成分分析 VS 自动编码器

 

自动编码器模型结构

图像重构:

X_decoded_deep_ae = sc.inverse_transform(decoded_imgs)
reconstructed_image_deep_ae = Image.fromarray(np.uint8(X_decoded_deep_ae))
plt.figure(figsize=(8,12))
plt.imshow(reconstructed_image_deep_ae,cmap = plt.cm.gray)
降维算法:主成分分析 VS 自动编码器

 

计算均方误差:

error_dae = my_rmse(image_matrix,X_decoded_deep_ae)

多层自动编码器的均方误差为 8.57,性能优于 PCA,提升了 28%。

具有非线性激活的附加层的自动编码器能够更好地捕获图像中的非线性特征。它能够比PCA更好地捕捉复杂的模式和像素值的突然变化。但是它需要花费相对较高的训练时间和资源。

总结

本文主要介绍了主成分分析以及自动编码器两种方法,具体分析两者的优缺点,并且通过一个生动的示例进行详解。

完整代码github: samread81/PCA-versus-AE

作者:Abhishek Mungoli

deephub翻译组:Oliver Lee



Tags:降维算法   点击:()  评论:()
声明:本站部分内容及图片来自互联网,转载是出于传递更多信息之目的,内容观点仅代表作者本人,如有任何标注错误或版权侵犯请与我们联系(Email:2595517585@qq.com),我们将及时更正、删除,谢谢。
▌相关推荐
降维是一种减少特征空间维度以获得稳定的、统计上可靠的机器学习模型的技术。降维主要有两种途径:特征选择和特征变换。特征选择通过选择重要程度最高的若干特征,移除共性的...【详细内容】
2020-06-28  Tags: 降维算法  点击:(97)  评论:(0)  加入收藏
▌简易百科推荐
前言Kafka 中有很多延时操作,比如对于耗时的网络请求(比如 Produce 是等待 ISR 副本复制成功)会被封装成 DelayOperation 进行延迟处理操作,防止阻塞 Kafka请求处理线程。Kafka...【详细内容】
2021-12-27  Java技术那些事    Tags:时间轮   点击:(1)  评论:(0)  加入收藏
博雯 发自 凹非寺量子位 报道 | 公众号 QbitAI在炼丹过程中,为了减少训练所需资源,MLer有时会将大型复杂的大模型“蒸馏”为较小的模型,同时还要保证与压缩前相当的结果。这就...【详细内容】
2021-12-24  量子位    Tags:蒸馏法   点击:(9)  评论:(0)  加入收藏
分稀疏重建和稠密重建两类:稀疏重建:使用RGB相机SLAMOrb-slam,Orb-slam2,orb-slam3:工程地址在: http://webdiis.unizar.es/~raulmur/orbslam/ DSO(Direct Sparse Odometry)因为...【详细内容】
2021-12-23  老师明明可以靠颜值    Tags:算法   点击:(7)  评论:(0)  加入收藏
1. 基本概念希尔排序又叫递减增量排序算法,它是在直接插入排序算法的基础上进行改进而来的,综合来说它的效率肯定是要高于直接插入排序算法的;希尔排序是一种不稳定的排序算法...【详细内容】
2021-12-22  青石野草    Tags:希尔排序   点击:(6)  评论:(0)  加入收藏
ROP是一种技巧,我们对execve函数进行拼凑来进行system /bin/sh。栈迁移的特征是溢出0x10个字符,在本次getshell中,还碰到了如何利用printf函数来进行canary的泄露。ROP+栈迁移...【详细内容】
2021-12-15  星云博创    Tags:栈迁移   点击:(19)  评论:(0)  加入收藏
一、什么是冒泡排序1.1、文字描述冒泡排序是一种简单的排序算法。它重复地走访要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地...【详细内容】
2021-12-15    晓掌柜丶韶华  Tags:排序算法   点击:(16)  评论:(0)  加入收藏
在了解golang的map之前,我们需要了解哈希这个概念。哈希表,又称散列表(Hash table),是根据键(key)而直接访问在内存储存位置的数据结构。也就是说,它通过计算出一个键值的函数,将...【详细内容】
2021-12-07  一棵梧桐木    Tags:哈希表   点击:(13)  评论:(0)  加入收藏
前面文章在谈论分布式唯一ID生成的时候,有提到雪花算法,这一次,我们详细点讲解,只讲它。SnowFlake算法据国家大气研究中心的查尔斯·奈特称,一般的雪花大约由10^19个水分子...【详细内容】
2021-11-17  小心程序猿QAQ    Tags:雪花算法   点击:(24)  评论:(0)  加入收藏
导读:在大数据时代,对复杂数据结构中的各数据项进行有效的排序和查找的能力非常重要,因为很多现代算法都需要用到它。在为数据恰当选择排序和查找策略时,需要根据数据的规模和类型进行判断。尽管不同策略最终得到的结果完...【详细内容】
2021-11-04  华章科技    Tags:排序算法   点击:(37)  评论:(0)  加入收藏
这是我在网上找的资源的一个总结,会先给出一个我看了觉得还行的关于算法的讲解,再配上实现的代码: Original author: Bill_Hoo Original Address: http://blog.sina.com.cn/s/bl...【详细内容】
2021-11-04  有AI野心的电工和码农    Tags: KMP算法   点击:(36)  评论:(0)  加入收藏
相关文章
    无相关信息
最新更新
栏目热门
栏目头条