您当前的位置:首页 > 电脑百科 > 软件技术 > 操作系统 > linux百科

Linux 网络访问慢?使用这个方法快速定位

时间:2023-03-20 17:19:23  来源:今日头条  作者:Linux码农

linux 服务器中,可以通过内核调优、DPDK 以及 XDP 等多种方式提高服务器的抗攻击能力,降低 DDoS 对正常服务的影响。在应用程序中,可以使用各级缓存、WAF、CDN 等来缓解 DDoS 对应用程序的影响。

但是需要注意的是,如果 DDoS 流量已经到达 Linux 服务器,那么即使应用层做了各种优化,网络服务延迟一般也会比平时大很多。

因此,在实际应用中,我们通常使用 Linux 服务器,配合专业的流量清洗和网络防火墙设备,来缓解这个问题。

除了 DDoS 导致的网络延迟增加,我想你一定见过很多其他原因导致的网络延迟,例如:

  • 网络传输慢导致的延迟。
  • Linux 内核协议栈数据包处理速度慢导致的延迟。
  • 应用程序数据处理速度慢造成的延迟等。

那么当我们遇到这些原因造成的延误时,我们该怎么办呢?如何定位网络延迟的根本原因?让我们在本文中讨论网络延迟。

Linux 网络延迟

谈到网络延迟.NETwork Latency),人们通常认为它是指网络数据传输所需的时间。但是,这里的“时间”是指双向流量,即数据从源发送到目的地,然后从目的地地址返回响应的往返时间:RTT(Round-Trip Time)。

除了网络延迟之外,另一个常用的指标是应用延迟(Application Latency),它是指应用接收请求并返回响应所需的时间。通常,应用延迟也称为往返延迟,它是网络数据传输时间加上数据处理时间的总和。

​通常人们使用 ping 命令来测试网络延迟,ping 是基于 ICMP 协议的,它通过计算 ICMP 发出的响应报文和 ICMP 发出的请求报文之间的时间差来获得往返延迟时间。这个过程不需要特殊的认证,从而经常被很多网络攻击所利用,如,端口扫描工具 nmap、分组工具 hping3 等。

因此,为了避免这些问题,很多网络服务都会禁用 ICMP,这使得我们无法使用 pi​ng 来测试网络服务的可用性和往返延迟。在这种情况下,您可以使用 traceroute 或 hping3 的 TCP 和 UDP 模式来获取网络延迟。

例如:

# -c: 3 requests
# -S: Set TCP SYN
# -p: Set port to 80
$ hping3 -c 3 -S -p 80 google.com
HPING google.com (eth0 142.250.64.110): S set, 40 headers + 0 data bytes
len=46 ip=142.250.64.110 ttl=51 id=47908 sport=80 flags=SA seq=0 win=8192 rtt=9.3 ms
len=46 ip=142.250.64.110 ttl=51 id=6788  sport=80 flags=SA seq=1 win=8192 rtt=10.9 ms
len=46 ip=142.250.64.110 ttl=51 id=37699 sport=80 flags=SA seq=2 win=8192 rtt=11.9 ms
--- bAIdu.com hping statistic ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 9.3/10.9/11.9 ms

当然,你也可以使用 traceroute:

$ traceroute --tcp -p 80 -n google.com
traceroute to google.com (142.250.190.110), 30 hops max, 60 byte packets
 1  * * *
 2  240.1.236.34  0.198 ms * *
 3  * * 243.254.11.5  0.189 ms
 4  * 240.1.236.17  0.216 ms 240.1.236.24  0.175 ms
 5  241.0.12.76  0.181 ms 108.166.244.15  0.234 ms 241.0.12.76  0.219 ms
 ...
24  142.250.190.110  17.465 ms 108.170.244.1  18.532 ms 142.251.60.207  18.595 ms

traceroute 会在路由的每一跳(hop)发送三个数据包,并在收到响应后输出往返延迟。如果没有响应或响应超时(默认 5s),将输出一个星号 *。

案例展示

我们需要在此演示中托管 host1 和 host2 两个主机:

  • host1 (192.168.0.30):托管两个 Nginx Web 应用程序(正常和延迟)
  • host2 (192.168.0.2):分析主机

host1 准备

在 host1 上,让我们运行启动两个容器,它们分别是官方 Nginx 和具有延迟版本的 Nginx:

# Official nginx
$ Docker run --network=host --name=good -itd nginx
fb4ed7cb9177d10e270f8320a7fb64717eac3451114c9fab3c50e02be2e88ba2
# Latency version of nginx

$ docker run --name nginx --network=host -itd feisky/nginx:latency
b99bd136dcfd907747d9c803fdc0255e578bad6d66f4e9c32b826d75b6812724

运行以下命令以验证两个容器都在为流量提供服务:

$ curl http://127.0.0.1
<!DOCTYPE html>
<html>
...
<p><em>Thank you for using nginx.</em></p>
</body>
</html>
$ curl http://127.0.0.1:8080
...
<p><em>Thank you for using nginx.</em></p>
</body>
</html>

host2 准备

现在让我们用上面提到的 hping3 来测试它们的延迟,看看有什么区别。在 host2 中,执行以下命令分别测试案例机的 8080 端口和 80 端口的延迟:

80 端口:

$ hping3 -c 3 -S -p 80 192.168.0.30
HPING 192.168.0.30 (eth0 192.168.0.30): S set, 40 headers + 0 data bytes
len=44 ip=192.168.0.30 ttl=64 DF id=0 sport=80 flags=SA seq=0 win=29200 rtt=7.8 ms
len=44 ip=192.168.0.30 ttl=64 DF id=0 sport=80 flags=SA seq=1 win=29200 rtt=7.7 ms
len=44 ip=192.168.0.30 ttl=64 DF id=0 sport=80 flags=SA seq=2 win=29200 rtt=7.6 ms
--- 192.168.0.30 hping statistic ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 7.6/7.7/7.8 ms

8080 端口:

# 测试8080端口延迟
$ hping3 -c 3 -S -p 8080 192.168.0.30
HPING 192.168.0.30 (eth0 192.168.0.30): S set, 40 headers + 0 data bytes
len=44 ip=192.168.0.30 ttl=64 DF id=0 sport=8080 flags=SA seq=0 win=29200 rtt=7.7 ms
len=44 ip=192.168.0.30 ttl=64 DF id=0 sport=8080 flags=SA seq=1 win=29200 rtt=7.6 ms
len=44 ip=192.168.0.30 ttl=64 DF id=0 sport=8080 flags=SA seq=2 win=29200 rtt=7.3 ms
--- 192.168.0.30 hping statistic ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 7.3/7.6/7.7 ms

从这个输出中您可以看到两个端口的延迟大致相同,均为 7 毫秒。但这仅适用于单个请求。如果换成并发请求怎么办?接下来,让我们用 wrk (https://Github.com/wg/wrk) 试试。

80 端口:

$ wrk --latency -c 100 -t 2 --timeout 2 http://192.168.0.30/
Running 10s test @ http://192.168.0.30/
  2 threads and 100 connections
  Thread Stats   Avg      Stdev     Max   +/- Stdev
    Latency     9.19ms   12.32ms 319.61ms   97.80%
    Req/Sec     6.20k   426.80     8.25k    85.50%
  Latency Distribution
     50%    7.78ms
     75%    8.22ms
     90%    9.14ms
     99%   50.53ms
  123558 requests in 10.01s, 100.15MB read
Requests/sec:  12340.91
Transfer/sec:     10.00MB

8080 端口:

$ wrk --latency -c 100 -t 2 --timeout 2 http://192.168.0.30:8080/
Running 10s test @ http://192.168.0.30:8080/
  2 threads and 100 connections
  Thread Stats   Avg      Stdev     Max   +/- Stdev
    Latency    43.60ms    6.41ms  56.58ms   97.06%
    Req/Sec     1.15k   120.29     1.92k    88.50%
  Latency Distribution
     50%   44.02ms
     75%   44.33ms
     90%   47.62ms
     99%   48.88ms
  22853 requests in 10.01s, 18.55MB read
Requests/sec:   2283.31
Transfer/sec:      1.85MB

从以上两个输出可以看出,官方 Nginx(监听 80 端口)的平均延迟为 9.19ms,而案例 Nginx(监听 8080 端口)的平均延迟为 43.6ms。从延迟分布上来看,官方 Nginx 可以在 9ms 内完成 90% 的请求;对于案例 Nginx,50% 的请求已经达到 44ms。

那么这里发生了什么呢?我们来做一些分析:

在 host1 中,让我们使用 tcpdump 捕获一些网络数据包:

$ tcpdump -nn tcp port 8080 -w nginx.pcap

现在,在 host2 上重新运行 wrk 命令

$ wrk --latency -c 100 -t 2 --timeout 2 http://192.168.0.30:8080/

当 wrk 命令完成后,再次切换回 Terminal 1(host1 的终端)并按 Ctrl+C 结束 tcpdump 命令。然后,用 Wireshark 把抓到的 nginx.pcap 复制到本机(如果 VM1(host1 的虚拟机)已经有图形界面,可以跳过复制步骤),用 Wireshark 打开。

由于网络包的数量很多,我们可以先过滤一下。例如,选中一个包后,可以右键选择 “Follow”->“TCP Stream”,如下图:

然后,关闭弹出的对话框并返回 Wireshark 主窗口。这时你会发现 Wireshark 已经自动为你设置了一个过滤表达式 tcp.stream eq 24。如下图所示(图中省略了源 IP 和目的 IP):

从这里,您可以看到从三次握手开始,此 TCP 连接的每个请求和响应。当然,这可能不够直观,可以继续点击菜单栏中的 Statistics -> Flow Graph,选择 “Limit to display filter”,将 Flow type 设置为 “TCP Flows”:

请注意,此图的左侧是客户端,而右侧是 Nginx 服务器。从这个图中可以看出,前三次握手和第一次 HTTP 请求和响应都相当快,但是第二次 HTTP 请求就比较慢了,尤其是客户端收到服务器的第一个数据包后,该 ACK 响应(图中的蓝线)在 40ms 后才被发送。

​看到 40ms 的值,你有没有想到什么?事实上,这是 TCP 延迟 ACK 的最小超时。这是 TCP ACK 的一种优化机制,即不是每次请求都发送一个 ACK,而是等待一段时间(比如 40ms),看看有没有“搭车”的数据包。如果在此期间还有其他数据包需要发送,它们将与 ACK 一起被发送。当然,如果等不及其他数据包,超时后会单独发送 ACK。

由于案例中的客户端发生了 40ms 延迟,我们有理由怀疑客户端开启了延迟确认机制(Delayed Acknowledgment Mechanism)。这里的客户端其实就是之前运行的 wrk。

根据 TCP 文档,只有在 TCP 套接字专门设置了 TCP_QUICKACK 时才会启用快速确认模式(Fast Acknowledgment Mode);否则,默认使用延迟确认机制:​

TCP_QUICKACK (since Linux 2.4.4)
              Enable  quickack mode if set or disable quickack mode if cleared.  In quickack mode, acks are sent imme‐
              diately, rather than delayed if needed in accordance to normal TCP operation.  This flag is  not  perma‐
              nent,  it only enables a switch to or from quickack mode.  Subsequent operation of the TCP protocol will
              once again enter/leave quickack mode depending on internal  protocol  processing  and  factors  such  as
              delayed ack timeouts occurring and data transfer.  This option should not be used in code intended to be
              portable.

让我们测试一下我们的质疑:

$ strace -f wrk --latency -c 100 -t 2 --timeout 2 http://192.168.0.30:8080/
...
setsockopt(52, SOL_TCP, TCP_NODELAY, [1], 4) = 0
...

可以看到 wrk 只设置了 TCP_NODELAY 选项,没有设置 TCP_QUICKACK。现在您可以看到为什么延迟 Nginx(案例 Nginx)响应会出现一个延迟。

结论

在本文中,我将向您展示如何分析增加的网络延迟。网络延迟是核心网络性能指标。由于网络传输、网络报文处理等多种因素的影响,网络延迟是不可避免的。但过多的网络延迟会直接影响用户体验。

  • 使用 hping3 和 wrk 等工具确认单个请求和并发请求的网络延迟是否正常。
  • 使用 traceroute,确认路由正确,并查看路由中每个网关跳跃点的延迟。
  • 使用 tcpdump 和 Wireshark 确认网络数据包是否正常收发。
  • 使用 strace 等观察应用程序对网络 socket 的调用是否正常。


Tags:Linux   点击:()  评论:()
声明:本站部分内容及图片来自互联网,转载是出于传递更多信息之目的,内容观点仅代表作者本人,不构成投资建议。投资者据此操作,风险自担。如有任何标注错误或版权侵犯请与我们联系,我们将及时更正、删除。
▌相关推荐
微软 Win11 Linux 子系统(WSL)发布 2.2.2 版本
IT之家 4 月 8 日消息,微软近日更新 Windows Subsystem for Linux(WSL),最新 2.2.2 版本中带来了诸多改进,重点更新了 nft 规则,可以让 IPv6 流量通过 Linux 容器。图源: dev.to,AI...【详细内容】
2024-04-08  Search: Linux  点击:(6)  评论:(0)  加入收藏
Linux 6.9-rc1 内核发布:AMD P-State 首选核心、BH 工作队列
IT之家 3 月 25 日消息,Linus Torvalds 宣布,Linux 6.9 内核的首个 RC(候选发布)版 Linux 6.9-rc1 发布。▲ Linux 6.9-rc1Linus 表示,Linux 内核 6.9 看起来是一个“相当正常”...【详细内容】
2024-03-25  Search: Linux  点击:(11)  评论:(0)  加入收藏
Win + Ubuntu 缝合怪:第三方开发者推出“Wubuntu”Linux 发行版
IT之家 2 月 26 日消息,一位第三方开发者推出了一款名为“Wubuntu”的缝合怪 Linux 发行版,系统本身基于 Ubuntu,但界面为微软 Windows 11 风格,甚至存在微软 Windows 徽标。据...【详细内容】
2024-02-27  Search: Linux  点击:(49)  评论:(0)  加入收藏
2024 年 Linux 和开源的六大趋势预测
让我们尝试预测未来吧!新的一年快乐,朋友们 ✨2024 年的钟声已经敲过,我们有必要去预见一下将塑造本年度的各种潮流。我们不能预见未来,所以无法精确预知将会发生什么,但根据目前...【详细内容】
2024-01-09  Search: Linux  点击:(92)  评论:(0)  加入收藏
Linux 启动过程详解
第 1 步 - 当我们打开电源时,BIOS(基本输入/输出系统)或UEFI(统一可扩展固件接口)固件从非易失性存储器加载,并执行POST(开机自检)。第 2 步 - BIOS/UEFI 检测连接到系统的设备,包括...【详细内容】
2024-01-02  Search: Linux  点击:(88)  评论:(0)  加入收藏
对 Bash 感到厌倦?教你如何在 Linux 中更改默认 Shell
Bash 并不是唯一可供选择的 Shell。还存在数量众多的 Shell,它们都有一些独特的特性,例如 Zsh、Fish、Ksh 和 Xonsh。在你的系统中,你可以同时安装多个 Shell。要想将另一个 Sh...【详细内容】
2023-12-14  Search: Linux  点击:(199)  评论:(0)  加入收藏
如何解决Linux 服务器性能问题?
Linux 服务器以其稳定性和可靠性而闻名,但与任何系统一样,它们有时也会遇到性能问题。当您的 Linux 服务器的性能开始下降时,必须及时解决问题以确保应用程序和服务的顺利运行...【详细内容】
2023-12-14  Search: Linux  点击:(230)  评论:(0)  加入收藏
适用于 Linux 的 LibreOffice 替代品
LibreOffice 是一个出色的开源文档套件。它预装在许多 Linux 发行版上,应该足以满足大多数用户的需求。然而,有些人可能不喜欢它的用户界面和功能集。某些用户可能想尝试其他...【详细内容】
2023-11-30  Search: Linux  点击:(122)  评论:(0)  加入收藏
十个最佳免费 Linux 防火墙工具
概述防火墙是保护网络边界的关键。防火墙会阻止敏感端口并过滤传入和传出流量,以阻止恶意连接并确保不会发生未经请求的数据交换。在自由开源软件的世界里,有很多防火墙解决方...【详细内容】
2023-11-28  Search: Linux  点击:(173)  评论:(0)  加入收藏
Linux 内核调度器源码解析:从调度入口到挑选下一个进程
在Linux内核中,调度器(scheduler)扮演着至关重要的角色,决定了哪个进程将获得CPU的执行时间。本文将深入剖析内核中调度器的代码实现,从入口函数开始,一步步分析如何选择下一个要...【详细内容】
2023-11-27  Search: Linux  点击:(269)  评论:(0)  加入收藏
▌简易百科推荐
微软 Win11 Linux 子系统(WSL)发布 2.2.2 版本
IT之家 4 月 8 日消息,微软近日更新 Windows Subsystem for Linux(WSL),最新 2.2.2 版本中带来了诸多改进,重点更新了 nft 规则,可以让 IPv6 流量通过 Linux 容器。图源: dev.to,AI...【详细内容】
2024-04-08    IT之家  Tags:Linux   点击:(6)  评论:(0)  加入收藏
从原理到实践:深入探索Linux安全机制
Linux 是一种开源的类Unix操作系统内核,由Linus Torvalds在1991年首次发布,其后又衍生出许多不同的发行版(如Ubuntu、Debian、CentOS等)。前言本文将从用户和权限管理、文件系统...【详细内容】
2024-03-27  凡夫编程  微信公众号  Tags:Linux安全   点击:(16)  评论:(0)  加入收藏
在Linux系统中,如何处理内存管理和优化的问题?
本文对 Linux 内存管理和优化的一些高级技巧的详细介绍,通过高级的内存管理技巧,可以帮助系统管理员和开发人员更好地优化 Linux 系统的内存使用情况,提高系统性能和稳定性。在...【详细内容】
2024-03-26  编程技术汇  微信公众号  Tags:Linux   点击:(10)  评论:(0)  加入收藏
Linux 6.9-rc1 内核发布:AMD P-State 首选核心、BH 工作队列
IT之家 3 月 25 日消息,Linus Torvalds 宣布,Linux 6.9 内核的首个 RC(候选发布)版 Linux 6.9-rc1 发布。▲ Linux 6.9-rc1Linus 表示,Linux 内核 6.9 看起来是一个“相当正常”...【详细内容】
2024-03-25    IT之家  Tags:Linux   点击:(11)  评论:(0)  加入收藏
轻松实现Centos系统的软件包安装管理:yum指令实战详解
yum 是一种用于在 CentOS、Red Hat Enterprise Linux (RHEL) 等基于 RPM 的 Linux 发行版上安装、更新和管理软件包的命令行工具。它可以自动解决软件包依赖关系,自动下载并...【详细内容】
2024-02-27  凡夫贬夫  微信公众号  Tags:Centos   点击:(54)  评论:(0)  加入收藏
Win + Ubuntu 缝合怪:第三方开发者推出“Wubuntu”Linux 发行版
IT之家 2 月 26 日消息,一位第三方开发者推出了一款名为“Wubuntu”的缝合怪 Linux 发行版,系统本身基于 Ubuntu,但界面为微软 Windows 11 风格,甚至存在微软 Windows 徽标。据...【详细内容】
2024-02-27    IT之家  Tags:Ubuntu   点击:(49)  评论:(0)  加入收藏
Linux中磁盘和文件系统工作原理解析
在Linux系统中,一切皆文件的概念意味着所有的资源,包括普通文件、目录以及设备文件等,都以文件的形式存在。这种统一的文件系统管理方式使得Linux系统具有高度的灵活性和可扩展...【详细内容】
2024-02-20  王建立    Tags:Linux   点击:(51)  评论:(0)  加入收藏
Linux子系统概览
inux操作系统是一个模块化的系统,由多个子系统组成。这些子系统协同工作,使Linux能够执行各种任务。了解Linux的子系统有助于更好地理解整个操作系统的运作机制。以下是Linux...【详细内容】
2024-02-01    简易百科  Tags:Linux   点击:(77)  评论:(0)  加入收藏
Linux内核:系统之魂与交互之源
内核,作为任何基于Linux的操作系统的心脏,扮演着至关重要的角色。它不仅是计算机系统软件与硬件之间的桥梁,更是确保系统稳定、高效运行的关键。内核提供了一系列核心功能,为上...【详细内容】
2024-02-01  松鼠宝贝    Tags:Linux内核   点击:(68)  评论:(0)  加入收藏
如何确保Linux进程稳定与持久
在Linux系统中,进程的稳定性与持久性对于维持系统的持续运行至关重要。然而,由于各种原因,进程可能会面临崩溃或系统重启的情况。为了确保关键进程能够持续运行,我们必须采取一...【详细内容】
2024-01-19  松鼠宝贝    Tags:Linux进程   点击:(85)  评论:(0)  加入收藏
站内最新
站内热门
站内头条