您当前的位置:首页 > 电脑百科 > 数据库 > MYSQL

MySQL innodb引擎深入讲解

时间:2022-04-19 09:16:57  来源:  作者:上班爱摸鱼的IT男

一、逻辑存储结构

表空间(ibd文件),一个MySQL实例可以对应多个表空间,用于存储记录,索引等数据。

MySQL innodb引擎深入讲解

 

段,分为数据段、索引段、回滚段,innodb是索引组织表,数据段就是B+Tree的叶子节点,索引段为非叶子节点,段用来管理多个区。

区,表空间的单元结构,每个区的大小为1M,默认情况下,innodb存储引擎页大小为16K,即一个区中一共有64个连续的页。

页,是innodb存储引擎磁盘管理的最小单元,每个页的大小为16K,为了保证页的连续性,innodb存储引擎每次从磁盘申请4~5个区。

行,innodb存储引擎数据是按行进行存储的。Trx_id 最后一次事务操作的id、roll_pointer滚动指针。

innodb的内存结构,由Buffer Pool、Change Buffer和Log Buffer组成。

Buffer Pool: 缓冲池是主内存中的一个区域,里面可以缓存磁盘上经常操作的真实数据,在执行增删改查操作时,先操作缓冲池中的数据(若缓冲池么有数据,则从磁盘加载并缓存),然后再以一定频率刷新磁盘,从而减少磁盘IO,加快处理速度。

缓冲池以page页为单位,底层采用链表数据结构管理page,根据状态,将page分为三种类型:

1、free page 即空闲page,未被使用。

2、clean page 被使用page,数据没有被修改过。

3、dirty page 脏页,被使用page,数据被修改过,这个page当中的数据和磁盘当中的数据 不一致。说得简单点就是缓冲池中的数据改了,磁盘中的没改,因为还没刷写到磁盘。

Change Buffer:更改缓冲区(针对于非唯一二级索引页),在执行DML语句时,如果这些数据page没有在Buffer Pool中,不会直接操作磁盘,而会将数据变更存在更改缓冲区Change Buffer中,在未来数据被读取时。再将数据合并恢复到Buffer Pool中,再将合并后的数据刷新到磁盘中。

二级索引通常是非唯一的,并且以相对随机的顺序插入二级索引页,同样,删除和更新可能会影响索引树中不相邻的二级索引页。如果每一次都操作磁盘,会造成大量磁盘IO,有了Change Buffer之后,我们可以在缓冲池中进行合并处理,减少磁盘IO。

Adaptive Hash Index: 自适应hash索引,用于优化对Buffer Pool数据的查询,InnoDB存储引擎会监控对表上各索引页的查询,如果观察到hash索引可以提升速度,则建立hash索引,称之为自适应hash索引。无需人工干预,系统根据情况自动完成。

参数:
innodb_adaptive_hash_index

mysql> show variables like '%hash_index%';
+----------------------------------+-------+
| Variable_name | Value |
+----------------------------------+-------+
| innodb_adaptive_hash_index | ON |
| innodb_adaptive_hash_index_parts | 8 |
+----------------------------------+-------+
2 rows in set (0.01 sec)

Log Buffer: 日志缓冲区,用来保存要写入到磁盘中的log日志数据(redo log、undo log),默认大小为16M,日志缓冲区的日志会定期刷新到磁盘中,如果需要更新,插入或删除许多行的事务,增加日志缓冲区的大小可以节省磁盘IO。

参数: innodb_log_buffer_size 缓冲区大小


innodb_flush_log_at_trx_commit 日志刷新到磁盘时机

MySQL innodb引擎深入讲解

 


innodb_flush_log_at_trx_commit=1 表示日志在每次事务提交时写入并刷新到磁盘

2 表示日志在每次事务提交后写入,并每秒刷新到磁盘一次

0 表示每秒将日志写入并刷新到磁盘一次。

 

InnoDB 的磁盘结构,由系统表空间(ibdata1),独立表空间(*.ibd),通用表空间,撤销表空间(undo tablespaces), 临时表空间(Temporary Tablespaces), 双写缓冲区(Doublewrite Buffer files), 重做日志(Redo Log).

系统表空间(ibdata1): 系统表空间是更改缓冲区的存储区域,如果表是在系统表空间而不是每个表文件或者通用表空间中创建的,它也可能包含表和索引数据。

参数为: innodb_data_file_path

MySQL innodb引擎深入讲解

 

独立表空间(*.ibd): 每个表的文件表空间包含单个innodb表的数据和索引,并存储在文件系 统上的单个数据文件中。 参数: innodb_file_per_table

通用表空间: 需要通过create tablespace 语法创建,创建表时 可以指定该表空间。

create tablespace xxx add datafile 'file_name' engine=engine_name

create table table_name .... tablespace xxx

撤销表空间(undo tablespaces): MySQL实例在初始化时会自动创建两个默认的undo表空间(初始大小16K,undo_001,undo_002),用于存储undo log 日志

临时表空间(Temporary Tablespaces): innodb使用会话临时表空和全局表空间,存储用 户创建的临时表等数据。

双写缓冲区(Doublewrite Buffer files): innodb引擎将数据页从Buffer Pool刷新到磁盘前,先将数据页写入缓冲区文件中,便于系统异常时恢复数据。

重做日志(Redo Log): 是用来实现事务的持久性,该日志文件由两部分组成,重做日志缓冲区(redo log buffer)以及重做日志文件(redo log),前者是在内存中,后者在磁盘中,当事务提交之后会把修改信息都会存储到该日志中,用于在刷新脏页到磁盘时,发送错误时,进行数据恢复使用。以循环方式写入重做日志文件,涉及两个文件ib_logfile0,ib_logfile1。

那内存结构中的数据是如何刷新到磁盘中的? 在MySQL中有4个线程负责刷新日志到磁盘。

1、Master Thread, mysql核心后台线程,负责调度其它线程,还负责将缓冲池中的数据异 步刷新到磁盘中,保持数据的一致性,还包括脏页的刷新,合并插入缓冲、undo页的回 收。

2、IO Thread,在innodb存储引擎中大量使用了AIO来处理IO请求,这样可以极大地提高数 据库的性能,而IO Thead主要负责这些IO请求的回调。

4个读线程 Read thread负责读操作

4个写线程write thread负责写操作

1个Log thread线程 负责将日志缓冲区刷新到磁盘

1个insert buffer线程 负责将写入缓冲区内容刷新到磁盘

3、Purge Thread,主要用于回收事务已经提交了的undo log,在事务提交之后,undo log 可能不用了,就用它来回收。

4、Page Cleaner Thread, 协助Master Thread 刷新脏页到磁盘的线程,它可以减轻主线程 的压力,减少阻塞。

MySQL innodb引擎深入讲解

 

事务原理

事务就是一组操作的集合,它是一个不可分割的工作单位,事务会把所有的操作作为一个整体一起向系统提交或撤销操作请求,即这些操作要么同时成功,要么同时失效。

事务的4大特性分为:

  • 原子性atomicty: 事务是不可分割的最小操作单元,要么全部成功,要么全部失效。
  • 一致性consistency: 事务完成时,必须使所有的数据都保持一致状态。
  • 隔离性isolation: 数据库系统提供的隔离机制,保证事务在不受外部并发操作影响的独立 环境下运行。
  • 持久性durability: 事务一旦提交或回滚,它对数据库中的改变就是永久的。

如何保证事务的4大特性,原子性,一致性和持久性是由innodb存储引擎底层的两份日志来保证的,分别是redo log和undo log。对于隔离性是由锁机制和MVCC(多版本并发控制)来实现的。

redo log,称为重做日志,记录的是事务提交时数据页的物理修改,是用来实现事务的持久性。该日志文件由两部分组成: 重做日志缓冲redo log buffer及重做日志文件redo log file,前者是在内存中,后者是在磁盘中,当事务提交之后会把所有修改信息都存到该日志文件中,用于在刷新脏页到磁盘,发送错误时,进行数据的恢复使用,从而保证事务的持久性。

具体的操作流程是:

1、客户端发起事务操作,包含多条DML语句。首先去innodb中的buffer pool中的数据页去查找有没有我们要更新的这些数据,如果没有则通过后台线程从磁盘中加载到buffer pool对应的数据页中,然后就可以在缓冲池中进行数据操作了。

2、此时缓冲池中的数据页发生了变更,还没刷写到磁盘,这个数据页称为脏页。脏页不是实时刷新到磁盘的,而是根据你配置的刷写策略进行刷写到磁盘的(
innodb_flush_log_at_trx_commit,0,1,2三个值)。如果脏页在往磁盘刷新的时候出现了故障,会丢失数据,导致事务的持久性得不到保证。为了避免这种现象,当对缓冲池中的数据进行增删改操作时,会把增删改记录到redo log buffer当中,redo log buffer会把数据页的物理变更持久化到磁盘文件中(ib_logfile0/ib_logfile1)。如果脏页刷新失败,就可以通过这两个日志文件进行恢复。

undo log,它是用来解决事务的原子性的,也称为回滚日志。用于记录数据被修改前的信息,作用包括:提供回滚和MVCC多版本并发控制。

undo log和redo log的记录物理日志不一样,它是逻辑日志。可以认为当delete一条记录时,undo log中会记录一条对应的insert记录,当update一条记录时,它记录一条对应相反的update记录,当执行rollback时,就可以从undo log中的逻辑记录读取到相应的内容并进行回滚。

undo log销毁: undo log 在事务执行时产生,事务提交时,并不会立即删除undo log,因为这些日子可能用于MVCC。

undo log存储: undo log 采用段的方式进行管理和记录,存放在前面介绍的rollback segment回滚段中,内部包含1024个undo log segment。

MVCC

mvcc(multi-Version Concurrency Control),多版本并发控制,指维护一个数据的多个版本,使得读写操作没有冲突,快照读为MySQL实现MVCC提供了一个非阻塞读功能,MVCC的具体实现,还需要依赖于数据库记录中的三个隐式字段,undo log日志、readView。

  • 当前读,指的是记录的最新版本,读取时还要保证其他并发事务不能修改当前记录,会对读取的记录进行加锁。对于我们日常的操作,如 select 。。。lock in share mode,select 。。。 for update、update、insert、delete都是一种当前读。
  • 快照读,简单的select(不加锁)就是快照读,读取的是记录数据的可见版本,有可能是历史数据,不加锁是非阻塞读。

read committed 每次select 都生成一个快照读

repeatable read 开启事务后第一个select语句才是快照读的地方

serializable 快照读会退化为当前读。

mvcc的实现原理

  • 记录中的隐藏字段 DB_TRX_ID、DB_ROLL_PTR、DB_ROW_ID (ibd2sdi stu.ibd查看表空间)

DB_TRX_ID: 最近修改事务ID,记录插入这条记录或最后一次修改该记录的事务ID

DB_ROLL_PTR: 回滚指针,指向这条记录的上一个版本,用于配合undo log,指向上一个 版本

DB_ROW_ID: 隐藏主键,如果表结构没有指定主键,将会生成该隐藏字段。

  • undo log 回滚日志,在insert、update、delete的时候产生的便于数据回滚的日志,当insert的时候,产生的undo log日志只在回滚时需要,在事务提交后可以立即删除。而update、delete的时候,产生的undo log 日志不仅仅在回滚时需要,在快照读时也需要,不会立即被删除。
  • undo log版本链,不同事务或相同事务对同一条记录进行修改,会导致该记录的undo log生成一条记录版本链表,链表的头部是最新的旧记录,链表尾部是最早的旧记录。
  • readView(读视图),就是快照读SQL执行时mvcc提取数据的依据,记录并维护系统当前活跃的事务(为提交的)ID,readview中包含了四个核心字段。

m_ids当前活跃的事务ID集合

min_trx_id: 最小活跃事务id

max_trx_id: 预分配事务ID,当前最大事务id+1,因为事务id是自增的

creator_trx_id: ReadView创建者的事务ID

 

版本链数据访问规则:

trx_id: 表示当前的事务ID

1、trx_id == creator_trx_id? 可以访问读版本-->成立的话,说明数据是当前这个事务更改的

2、trx_id<min_trx_id?可以访问读版本-->成立,说明数据已经提交了。

3、trx_id>max_trx_id?不可用访问读版本-> 成立的话,说明该事务是在ReadView生成后才开启的。

4、min_trx_id<=trx_id<=max_trx_id?如果trx_id不在m_ids中是可以访问读版本的-->成立的话,说明数据已经提交。

不同的隔离级别,生成ReadView的时机不同:

read committed: 在事务中每一次执行快照读时生成ReadView

repeatable read: 仅在事务中第一次执行快照读时生成readview,后续复用度readview。

MySQL innodb引擎深入讲解

 

小结:

1、innodb的逻辑存储结构: 表空间、段、页、行

2、innodb的架构由内存结构和磁盘结构组成

3、事务原理: 原子性--undo log实现

持久性--redo log实现

一致性--undo log 加 redo log

隔离性--锁加 mvcc

4、mvcc,记录隐藏字段,undo log版本链,readView



Tags:innodb   点击:()  评论:()
声明:本站部分内容及图片来自互联网,转载是出于传递更多信息之目的,内容观点仅代表作者本人,不构成投资建议。投资者据此操作,风险自担。如有任何标注错误或版权侵犯请与我们联系,我们将及时更正、删除。
▌相关推荐
MySQL:InnoDB的页合并与页分裂到底是什么
不管是页分裂还是页合并,InnoDB都会在索引树上加写锁(x-latch)。在操作频繁的系统中这会是在隐患,可能会导致索引的锁竞争(index latch contention)。如果表中没有合并和分裂操作(...【详细内容】
2023-12-27  Search: innodb  点击:(88)  评论:(0)  加入收藏
深入解析InnoDB存储引擎中的redo日志机制
在InnoDB存储引擎中,redo日志是一种关键的机制,用于确保数据库的持久性和一致性。在redo日志中,每条日志记录都包含了一些重要的信息,包括类型、表空间ID、页号以及具体内容。首...【详细内容】
2023-11-28  Search: innodb  点击:(152)  评论:(0)  加入收藏
MySQL性能飙升的秘密武器:Innodb_lru_scan_depth参数解密!
1、innodb_lru_scan_depth 到底是何方神圣? innodb_lru_scan_depth参数就像MySQL的一把钥匙,控制着LRU(Least Recently Used)算法的扫描深度。LRU 算法用于管理 InnoDB 缓冲池中...【详细内容】
2023-11-20  Search: innodb  点击:(227)  评论:(0)  加入收藏
InnoDB为什么不用跳表,Redis为什么不用B+树?
Innodb是MySQL的执行引擎,MySQL是一种关系型数据库,而Redis是一种非关系型数据库。这两者之间比较大的区别是:关系型数据库以表的形式进行存储数据,而非关系型数据库以Key-value...【详细内容】
2023-06-06  Search: innodb  点击:(259)  评论:(0)  加入收藏
一分钟搭建MySQL InnoDB Cluster高可用集群
1、为什么需要集群单台数据库服务器存在并发能力低、存在单点故障风险等局限,集群能够很好的通过多台服务器的协作,实现互为主备、高可用/故障转移、负载均衡、读写分离等特性...【详细内容】
2023-03-29  Search: innodb  点击:(223)  评论:(0)  加入收藏
MySql的InnoDB的三层B+树可以存储两千万左右条数据的计算逻辑
B+树是一种在非叶子节点存放排序好的索引而在叶子节点存放数据的数据结构,值得注意的是,在叶子节点中,存储的并非只是一行表数据,而是以页为单位存储,一个页可以包含多行表记录。...【详细内容】
2022-09-26  Search: innodb  点击:(442)  评论:(0)  加入收藏
MySQL中MyISAM为什么比InnoDB查询快
大家都知道在MySQL中,MyISAM比InnoDB查询快,但很多人都不知道其中的原理。今天我们就来聊聊其中的原理,另外也验证下是否MyISAM比InnoDB真的查询快。在探索其中原理之前,我们先...【详细内容】
2022-07-22  Search: innodb  点击:(432)  评论:(0)  加入收藏
两万字详解InnoDB的锁
本文将跟大家聊聊InnoDb的锁,以及如何分析和解决死锁问题,希望对大家有帮助哈。 为什么需要加锁呢? InnoDB的七种锁介绍 一条SQL是如何加锁的 RR隔离级别下的加锁规则 如何查看...【详细内容】
2022-05-06  Search: innodb  点击:(274)  评论:(0)  加入收藏
MySQL innodb引擎深入讲解
一、逻辑存储结构表空间(ibd文件),一个MySQL实例可以对应多个表空间,用于存储记录,索引等数据。 段,分为数据段、索引段、回滚段,innodb是索引组织表,数据段就是B+Tree的叶子节点...【详细内容】
2022-04-19  Search: innodb  点击:(355)  评论:(0)  加入收藏
Mysql Innodb 引擎解决并发问题
并行与并发根本区别在于是否会竞争共享资源, 解决并发问题两个大的方向: 解决资源资源和解决并发问题。解决竞争资源共享资源是引起问题的根本原因, 如果将共享资源变为非共享...【详细内容】
2022-01-07  Search: innodb  点击:(302)  评论:(0)  加入收藏
▌简易百科推荐
MySQL 核心模块揭秘
server 层会创建一个 SAVEPOINT 对象,用于存放 savepoint 信息。binlog 会把 binlog offset 写入 server 层为它分配的一块 8 字节的内存里。 InnoDB 会维护自己的 savepoint...【详细内容】
2024-04-03  爱可生开源社区    Tags:MySQL   点击:(10)  评论:(0)  加入收藏
MySQL 核心模块揭秘,你看明白了吗?
为了提升分配 undo 段的效率,事务提交过程中,InnoDB 会缓存一些 undo 段。只要同时满足两个条件,insert undo 段或 update undo 段就能被缓存。1. 关于缓存 undo 段为了提升分...【详细内容】
2024-03-27  爱可生开源社区  微信公众号  Tags:MySQL   点击:(17)  评论:(0)  加入收藏
MySQL:BUG导致DDL语句无谓的索引重建
对于5.7.23之前的版本在评估类似DDL操作的时候需要谨慎,可能评估为瞬间操作,但是实际上线的时候跑了很久,这个就容易导致超过维护窗口,甚至更大的故障。一、问题模拟使用5.7.22...【详细内容】
2024-03-26  MySQL学习  微信公众号  Tags:MySQL   点击:(14)  评论:(0)  加入收藏
从 MySQL 到 ByteHouse,抖音精准推荐存储架构重构解读
ByteHouse是一款OLAP引擎,具备查询效率高的特点,在硬件需求上相对较低,且具有良好的水平扩展性,如果数据量进一步增长,可以通过增加服务器数量来提升处理能力。本文将从兴趣圈层...【详细内容】
2024-03-22  字节跳动技术团队    Tags:ByteHouse   点击:(29)  评论:(0)  加入收藏
MySQL自增主键一定是连续的吗?
测试环境:MySQL版本:8.0数据库表:T (主键id,唯一索引c,普通字段d)如果你的业务设计依赖于自增主键的连续性,这个设计假设自增主键是连续的。但实际上,这样的假设是错的,因为自增主键不...【详细内容】
2024-03-10    dbaplus社群  Tags:MySQL   点击:(14)  评论:(0)  加入收藏
准线上事故之MySQL优化器索引选错
1 背景最近组里来了许多新的小伙伴,大家在一起聊聊技术,有小兄弟提到了MySQL的优化器的内部策略,想起了之前在公司出现的一个线上问题,今天借着这个机会,在这里分享下过程和结论...【详细内容】
2024-03-07  转转技术  微信公众号  Tags:MySQL   点击:(32)  评论:(0)  加入收藏
MySQL数据恢复,你会吗?
今天分享一下binlog2sql,它是一款比较常用的数据恢复工具,可以通过它从MySQL binlog解析出你要的SQL,并根据不同选项,可以得到原始SQL、回滚SQL、去除主键的INSERT SQL等。主要...【详细内容】
2024-02-22  数据库干货铺  微信公众号  Tags:MySQL   点击:(54)  评论:(0)  加入收藏
如何在MySQL中实现数据的版本管理和回滚操作?
实现数据的版本管理和回滚操作在MySQL中可以通过以下几种方式实现,包括使用事务、备份恢复、日志和版本控制工具等。下面将详细介绍这些方法。1.使用事务:MySQL支持事务操作,可...【详细内容】
2024-02-20  编程技术汇    Tags:MySQL   点击:(54)  评论:(0)  加入收藏
MySQL数据库如何生成分组排序的序号
经常进行数据分析的小伙伴经常会需要生成序号或进行数据分组排序并生成序号。在MySQL8.0中可以使用窗口函数来实现,可以参考历史文章有了这些函数,统计分析事半功倍进行了解。...【详细内容】
2024-01-30  数据库干货铺  微信公众号  Tags:MySQL   点击:(55)  评论:(0)  加入收藏
mysql索引失效的场景
MySQL中索引失效是指数据库查询时无法有效利用索引,这可能导致查询性能显著下降。以下是一些常见的MySQL索引失效的场景:1.使用非前导列进行查询: 假设有一个复合索引 (A, B)。...【详细内容】
2024-01-15  小王爱编程  今日头条  Tags:mysql索引   点击:(88)  评论:(0)  加入收藏
站内最新
站内热门
站内头条