您当前的位置:首页 > 电脑百科 > 程序开发 > 语言 > Python

Python中的时间序列数据操作总结

时间:2023-01-04 14:24:54  来源:  作者:互联网资讯看板

时间序列数据是一种在一段时间内收集的数据类型,它通常用于金融经济学和气象学等领域,经常通过分析来了解随着时间的推移的趋势和模式

Pandas是Python/ target=_blank class=infotextkey>Python中一个强大且流行的数据操作库,特别适合处理时间序列数据。它提供了一系列工具和函数可以轻松加载、操作和分析时间序列数据。

在本文中,我们介绍时间序列数据的索引和切片、重新采样和滚动窗口计算以及其他有用的常见操作,这些都是使用Pandas操作时间序列数据的关键技术。

数据类型

Python

在Python中,没有专门用于表示日期的内置数据类型。一般情况下都会使用datetime模块提供的datetime对象进行日期时间的操作。

import datetime

t = datetime.datetime.now()
print(f"type: {type(t)} and t: {t}")
#type: and t: 2022-12-26 14:20:51.278230

一般情况下我们都会使用字符串的形式存储日期和时间。所以在使用时我们需要将这些字符串进行转换成datetime对象。

一般情况下时间的字符串有以下格式:

 

  •  

    YYYY-MM-DD (e.g. 2022-01-01)

     

  •  

    YYYY/MM/DD (e.g. 2022/01/01)

     

  •  

    DD-MM-YYYY (e.g. 01-01-2022)

     

  •  

    DD/MM/YYYY (e.g. 01/01/2022)

     

  •  

    MM-DD-YYYY (e.g. 01-01-2022)

     

  •  

    MM/DD/YYYY (e.g. 01/01/2022)

     

  •  

    HH:MM:SS (e.g. 11:30:00)

     

  •  

    HH:MM:SS AM/PM (e.g. 11:30:00 AM)

     

  •  

    HH:MM AM/PM (e.g. 11:30 AM)

     

 

strptime 函数以字符串和格式字符串作为参数,返回一个datetime对象。

string = '2022-01-01 11:30:09'
t = datetime.datetime.strptime(string, "%Y-%m-%d %H:%M:%S")
print(f"type: {type(t)} and t: {t}")
#type: and t: 2022-01-01 11:30:09

格式字符串如下:

还可以使用strftime函数将datetime对象转换回特定格式的字符串表示。

t = datetime.datetime.now()
t_string = t.strftime("%m/%d/%Y, %H:%M:%S")
#12/26/2022, 14:38:47

t_string = t.strftime("%b/%d/%Y, %H:%M:%S")
#Dec/26/2022, 14:39:32

Unix时间(POSIX时间或epoch时间)是一种将时间表示为单个数值的系统。它表示自1970年1月1日星期四00:00:00协调世界时(UTC)以来经过的秒数。

Unix时间和时间戳通常可以互换使用。Unix时间是创建时间戳的标准版本。一般情况下使用整数或浮点数据类型用于存储时间戳和Unix时间。

我们可以使用time模块的mktime方法将datetime对象转换为Unix时间整数。也可以使用datetime模块的fromtimestamp方法。

#convert datetime to unix time
import time
from datetime import datetime

t = datetime.now()
unix_t = int(time.mktime(t.timetuple()))
#1672055277

#convert unix time to datetime
unix_t = 1672055277
t = datetime.fromtimestamp(unix_t)
#2022-12-26 14:47:57

使用dateutil模块来解析日期字符串获得datetime对象。

from dateutil import parser
date = parser.parse("29th of October, 1923")
#datetime.datetime(1923, 10, 29, 0, 0)

Pandas

Pandas提供了三种日期数据类型:

1、Timestamp或DatetimeIndex:它的功能类似于其他索引类型,但也具有用于时间序列操作的专门函数。

t = pd.to_datetime("29/10/1923", dayfirst=True)
#Timestamp('1923-10-29 00:00:00')

t = pd.Timestamp('2019-01-01', tz = 'Europe/Berlin')
#Timestamp('2019-01-01 00:00:00+0100', tz='Europe/Berlin')

t = pd.to_datetime(["04/23/1920", "10/29/1923"])
#DatetimeIndex(['1920-04-23', '1923-10-29'], dtype='datetime64[ns]', freq=None)

2、period或PeriodIndex:一个有开始和结束的时间间隔。它由固定的间隔组成。

t = pd.to_datetime(["04/23/1920", "10/29/1923"])
period = t.to_period("D")
#PeriodIndex(['1920-04-23', '1923-10-29'], dtype='period[D]')

3、Timedelta或TimedeltaIndex:两个日期之间的时间间隔。

delta = pd.TimedeltaIndex(data =['1 days 03:00:00',
'2 days 09:05:01.000030'])
"""
TimedeltaIndex(['1 days 02:00:00', '1 days 06:05:01.000030'],
dtype='timedelta64[ns]', freq=None)
"""

在Pandas中,可以使用to_datetime方法将对象转换为datetime数据类型或进行任何其他转换。

import pandas as pd
df = pd.read_csv("dataset.txt")
df.head()

date value
0 1991-07-01 3.526591
1 1991-08-01 3.180891
2 1991-09-01 3.252221
3 1991-10-01 3.611003
4 1991-11-01 3.565869
"""

df.info()

RangeIndex: 204 entries, 0 to 203
Data columns (total 2 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 date 204 non-null object
1 value 204 non-null float64
dtypes: float64(1), object(1)
memory usage: 3.3+ KB
"""

# Convert to datetime
df["date"] = pd.to_datetime(df["date"], format = "%Y-%m-%d")

df.info()

RangeIndex: 204 entries, 0 to 203
Data columns (total 2 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 date 204 non-null datetime64[ns]
1 value 204 non-null float64
dtypes: datetime64[ns](1), float64(1)
memory usage: 3.3 KB
"""

# Convert to Unix
df['unix_time'] = df['date'].Apply(lambda x: x.timestamp())
df.head()
"""
date value unix_time
0 1991-07-01 3.526591 678326400.0
1 1991-08-01 3.180891 681004800.0
2 1991-09-01 3.252221 683683200.0
3 1991-10-01 3.611003 686275200.0
4 1991-11-01 3.565869 688953600.0
"""

df["date_converted_from_unix"] = pd.to_datetime(df["unix_time"], unit = "s")
df.head()
"""
date value unix_time date_converted_from_unix
0 1991-07-01 3.526591 678326400.0 1991-07-01
1 1991-08-01 3.180891 681004800.0 1991-08-01
2 1991-09-01 3.252221 683683200.0 1991-09-01
3 1991-10-01 3.611003 686275200.0 1991-10-01
4 1991-11-01 3.565869 688953600.0 1991-11-01
"""

我们还可以使用parse_dates参数在任何文件加载时直接声明日期列。

df = pd.read_csv("dataset.txt", parse_dates=["date"])
df.info()

RangeIndex: 204 entries, 0 to 203
Data columns (total 2 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 date 204 non-null datetime64[ns]
1 value 204 non-null float64
dtypes: datetime64[ns](1), float64(1)
memory usage: 3.3 KB
"""

如果是单个时间序列的数据,最好将日期列作为数据集的索引。

df.set_index("date",inplace=True)

"""
Value
date
1991-07-01 3.526591
1991-08-01 3.180891
1991-09-01 3.252221
1991-10-01 3.611003
1991-11-01 3.565869
... ...
2008-02-01 21.654285
2008-03-01 18.264945
2008-04-01 23.107677
2008-05-01 22.912510
2008-06-01 19.431740
"""

Numpy也有自己的datetime类型np.Datetime64。特别是在大型数据集时,向量化是非常有用的,应该优先使用。

import numpy as np
arr_date = np.array('2000-01-01', dtype=np.datetime64)
arr_date
#array('2000-01-01', dtype='datetime64[D]')

#broadcasting
arr_date = arr_date + np.arange(30)
"""
array(['2000-01-01', '2000-01-02', '2000-01-03', '2000-01-04',
'2000-01-05', '2000-01-06', '2000-01-07', '2000-01-08',
'2000-01-09', '2000-01-10', '2000-01-11', '2000-01-12',
'2000-01-13', '2000-01-14', '2000-01-15', '2000-01-16',
'2000-01-17', '2000-01-18', '2000-01-19', '2000-01-20',
'2000-01-21', '2000-01-22', '2000-01-23', '2000-01-24',
'2000-01-25', '2000-01-26', '2000-01-27', '2000-01-28',
'2000-01-29', '2000-01-30'], dtype='datetime64[D]')
"""

有用的函数

下面列出的是一些可能对时间序列有用的函数。

df = pd.read_csv("dataset.txt", parse_dates=["date"])
df["date"].dt.day_name()

"""
0 Monday
1 Thursday
2 Sunday
3 Tuesday
4 Friday
...
199 Friday
200 Saturday
201 Tuesday
202 Thursday
203 Sunday
Name: date, Length: 204, dtype: object
"""

DataReader

Pandas_datareader是pandas库的一个辅助库。它提供了许多常见的金融时间序列数据

#pip install pandas-datareader
from pandas_datareader import wb
#GDP per Capita From World Bank
df = wb.download(indicator='NY.GDP.PCAP.KD',
country=['US', 'FR', 'GB', 'DK', 'NO'], start=1960, end=2019)

"""
NY.GDP.PCAP.KD
country year
Denmark 2019 57203.027794
2018 56563.488473
2017 55735.764901
2016 54556.068955
2015 53254.856370
... ...
United States 1964 21599.818705
1963 20701.269947
1962 20116.235124
1961 19253.547329
1960 19135.268182

[300 rows x 1 columns]
"""

日期范围

我们可以使用pandas的date_range方法定义一个日期范围。

pd.date_range(start="2021-01-01", end="2022-01-01", freq="D")

"""
DatetimeIndex(['2021-01-01', '2021-01-02', '2021-01-03', '2021-01-04',
'2021-01-05', '2021-01-06', '2021-01-07', '2021-01-08',
'2021-01-09', '2021-01-10',
...
'2021-12-23', '2021-12-24', '2021-12-25', '2021-12-26',
'2021-12-27', '2021-12-28', '2021-12-29', '2021-12-30',
'2021-12-31', '2022-01-01'],
dtype='datetime64[ns]', length=366, freq='D')
"""

pd.date_range(start="2021-01-01", end="2022-01-01", freq="BM")

"""
DatetimeIndex(['2021-01-29', '2021-02-26', '2021-03-31', '2021-04-30',
'2021-05-31', '2021-06-30', '2021-07-30', '2021-08-31',
'2021-09-30', '2021-10-29', '2021-11-30', '2021-12-31'],
dtype='datetime64[ns]', freq='BM')
"""

fridays = pd.date_range('2022-11-01', '2022-12-31', freq="W-FRI")
"""
DatetimeIndex(['2022-11-04', '2022-11-11', '2022-11-18', '2022-11-25',
'2022-12-02', '2022-12-09', '2022-12-16', '2022-12-23',
'2022-12-30'],
dtype='datetime64[ns]', freq='W-FRI')
"""

我们可以使用timedelta_range方法创建一个时间序列。

t = pd.timedelta_range(0, periods=10, freq="H")

"""
TimedeltaIndex(['0 days 00:00:00', '0 days 01:00:00', '0 days 02:00:00',
'0 days 03:00:00', '0 days 04:00:00', '0 days 05:00:00',
'0 days 06:00:00', '0 days 07:00:00', '0 days 08:00:00',
'0 days 09:00:00'],
dtype='timedelta64[ns]', freq='H')
"""

格式化

我们dt.strftime方法改变日期列的格式。

df["new_date"] = df["date"].dt.strftime("%b %d, %Y")
df.head()
"""
date value new_date
0 1991-07-01 3.526591 Jul 01, 1991
1 1991-08-01 3.180891 Aug 01, 1991
2 1991-09-01 3.252221 Sep 01, 1991
3 1991-10-01 3.611003 Oct 01, 1991
4 1991-11-01 3.565869 Nov 01, 1991
"""

解析

解析datetime对象并获得日期的子对象。

df["year"] = df["date"].dt.year
df["month"] = df["date"].dt.month
df["day"] = df["date"].dt.day
df["calendar"] = df["date"].dt.date
df["hour"] = df["date"].dt.time
df.head()
"""
date value year month day calendar hour
0 1991-07-01 3.526591 1991 7 1 1991-07-01 00:00:00
1 1991-08-01 3.180891 1991 8 1 1991-08-01 00:00:00
2 1991-09-01 3.252221 1991 9 1 1991-09-01 00:00:00
3 1991-10-01 3.611003 1991 10 1 1991-10-01 00:00:00
4 1991-11-01 3.565869 1991 11 1 1991-11-01 00:00:00
"""

还可以重新组合它们。

df["date_joined"] = pd.to_datetime(df[["year","month","day"]])
print(df["date_joined"])
"""
0 1991-07-01
1 1991-08-01
2 1991-09-01
3 1991-10-01
4 1991-11-01
...
199 2008-02-01
200 2008-03-01
201 2008-04-01
202 2008-05-01
203 2008-06-01
Name: date_joined, Length: 204, dtype: datetime64[ns]

过滤查询

使用loc方法来过滤DataFrame。

df = df.loc["2021-01-01":"2021-01-10"]

truncate 可以查询两个时间间隔中的数据

df_truncated = df.truncate('2021-01-05', '2022-01-10')

常见数据操作

下面就是对时间序列数据集中的值执行操作。我们使用yfinance库创建一个用于示例的股票数据集。

#get google stock price data
import yfinance as yf
start_date = '2020-01-01'
end_date = '2023-01-01'
ticker = 'GOOGL'
df = yf.download(ticker, start_date, end_date)
df.head()

"""
Date Open High Low Close Adj Close Volume
2020-01-02 67.420502 68.433998 67.324501 68.433998 68.433998 27278000
2020-01-03 67.400002 68.687500 67.365997 68.075996 68.075996 23408000
2020-01-06 67.581497 69.916000 67.550003 69.890503 69.890503 46768000
2020-01-07 70.023003 70.175003 69.578003 69.755501 69.755501 34330000
2020-01-08 69.740997 70.592499 69.631500 70.251999 70.251999 35314000
"""

计算差值

diff函数可以计算一个元素与另一个元素之间的插值。

#subtract that day's value from the previous day
df["Diff_Close"] = df["Close"].diff()
#Subtract that day's value from the day's value 2 days ago
df["Diff_Close_2Days"] = df["Close"].diff(periods=2)

累计总数

df["Volume_Cumulative"] = df["Volume"].cumsum()

滚动窗口计算

滚动窗口计算(移动平均线)。

df["Close_Rolling_14"] = df["Close"].rolling(14).mean()
df.tail()

可以对我们计算的移动平均线进行可视化

常用的参数:

 

  •  

    center:决定滚动窗口是否应以当前观测值为中心。

     

  •  

    min_periods:窗口中产生结果所需的最小观测次数。

     

 

s = pd.Series([1, 2, 3, 4, 5])

#the rolling window will be centered on each observation
rolling_mean = s.rolling(window=3, center=True).mean()
"""
0 NaN
1 2.0
2 3.0
3 4.0
4 NaN
dtype: float64
Explanation:
first window: [na 1 2] = na
second window: [1 2 3] = 2
"""

# the rolling window will not be centered,
#and will instead be anchored to the left side of the window
rolling_mean = s.rolling(window=3, center=False).mean()
"""
0 NaN
1 NaN
2 2.0
3 3.0
4 4.0
dtype: float64
Explanation:
first window: [na na 1] = na
second window: [na 1 2] = na
third window: [1 2 3] = 2
"""

平移

Pandas有两个方法,shift()和tshift(),它们可以指定倍数移动数据或时间序列的索引。Shift()移位数据,而tshift()移位索引。

#shift the data
df_shifted = df.shift(5,axis=0)
df_shifted.head(10)

#shift the indexes
df_tshifted = df.tshift(periods = 4, freq = 'D')
df_tshifted.head(10)

df_shifted

df_tshifted

时间间隔转换

在 Pandas 中,操 to_period 函数允许将日期转换为特定的时间间隔。可以获取具有许多不同间隔或周期的日期

df["Period"] = df["Date"].dt.to_period('W')

频率

Asfreq方法用于将时间序列转换为指定的频率。

monthly_data = df.asfreq('M', method='ffill')

常用参数:

freq:数据应该转换到的频率。这可以使用字符串别名(例如,'M'表示月,'H'表示小时)或pandas偏移量对象来指定。

method:如何在转换频率时填充缺失值。这可以是'ffill'(向前填充)或'bfill'(向后填充)之类的字符串。

采样

resample可以改变时间序列频率并重新采样。我们可以进行上采样(到更高的频率)或下采样(到更低的频率)。因为我们正在改变频率,所以我们需要使用一个聚合函数(比如均值、最大值等)。

resample方法的参数:

rule:数据重新采样的频率。这可以使用字符串别名(例如,'M'表示月,'H'表示小时)或pandas偏移量对象来指定。

#down sample
monthly_data = df.resample('M').mean()

#up sample
minute_data = data.resample('T').ffill()

百分比变化

使用pct_change方法来计算日期之间的变化百分比。

df["PCT"] = df["Close"].pct_change(periods=2)
print(df["PCT"])
"""
Date
2020-01-02 NaN
2020-01-03 NaN
2020-01-06 0.021283
2020-01-07 0.024671
2020-01-08 0.005172
...
2022-12-19 -0.026634
2022-12-20 -0.013738
2022-12-21 0.012890
2022-12-22 -0.014154
2022-12-23 -0.003907
Name: PCT, Length: 752, dtype: float64
"""

总结

在Pandas和NumPy等库的帮助下,可以对时间序列数据执行广泛的操作,包括过滤、聚合和转换。本文介绍的是一些在工作中经常遇到的常见操作,希望对你有所帮助。

https://avoid.overfit.cn/post/4f8aab6d404e46bbbb712ad1497f5463

作者:Okan Yenigün



Tags:Python   点击:()  评论:()
声明:本站部分内容及图片来自互联网,转载是出于传递更多信息之目的,内容观点仅代表作者本人,如有任何标注错误或版权侵犯请与我们联系(Email:2595517585@qq.com),我们将及时更正、删除,谢谢。
▌相关推荐
前言许多小伙伴已经可以使用 Python 解决小问题。定义几个变量,洋洋洒洒写几段 if 和 for 都不喘气。但是,面对一个稍微复杂的问题,总感觉哪里不对劲,好像代码怎么样都写不出来...【详细内容】
2023-01-06  Tags: Python  点击:(0)  评论:(0)  加入收藏
eval()函数是Python的内置函数,功能非常强大,但是存在不小的安全隐患。有些企业或项目出于安全考虑,禁止使用eval()函数,会在一些安全相关的扫描校验中进行识别和拦截,杜绝使用。...【详细内容】
2023-01-05  Tags: Python  点击:(0)  评论:(0)  加入收藏
整理 | 屠敏出品 | CSDN(ID:CSDNnews)过去一年,在开源驱动的下,科技的发展迎来了巨大的变化,而当论及其所影响的具体领域、技术时,近日,TiDB 通过全面的开源软件洞察工具 OSS Insigh...【详细内容】
2023-01-04  Tags: Python  点击:(7)  评论:(0)  加入收藏
时间序列数据是一种在一段时间内收集的数据类型,它通常用于金融、经济学和气象学等领域,经常通过分析来了解随着时间的推移的趋势和模式Pandas是Python中一个强大且流行的数据...【详细内容】
2023-01-04  Tags: Python  点击:(0)  评论:(0)  加入收藏
导读:使用 C 扩展为 Python 提供特定功能。本文字数:7993,阅读时长大约: 9分钟 使用 C 扩展为 Python 提供特定功能。 在前一篇文章中,我介绍了 opensource.com。在大多数系统上,C...【详细内容】
2023-01-03  Tags: Python  点击:(14)  评论:(0)  加入收藏
TikTokDownload 是由国人开源的抖音去水印视频下载工具。开源地址是:https://github.com/Johnserf-Seed/TikTokDownload对于某些做视频分析和研究的同学来说,这个工具非常有用...【详细内容】
2023-01-03  Tags: Python  点击:(14)  评论:(0)  加入收藏
问题描述:给定四个整数,任意使用加、减、乘、除和小括号,构造出一个表达式,使得其最终结果为24,并输出这四个数字所组成的所有表达式。例如:34-15/3-5=24代码'''...【详细内容】
2023-01-03  Tags: Python  点击:(6)  评论:(0)  加入收藏
本文分享自华为云社区《[Python图像处理] 三十.图像预处理之图像去雾详解(ACE算法和暗通道先验去雾算法)丨【拜托了,物联网!】-云社区-华为云》,作者:eastmount 。一.图像去雾随着...【详细内容】
2022-12-30  Tags: Python  点击:(12)  评论:(0)  加入收藏
下面从这几个方面来详细详解python面向对象: 初识对象 成员方法 类和对象 构造方法 其它内置方法 封装 继承 类型注解 多态 综合案例一、初识对象生活中数据的组织 学校开学...【详细内容】
2022-12-29  Tags: Python  点击:(18)  评论:(0)  加入收藏
在当今这个社会,数据就是财富,数据就是金钱,一切都离不开数据,我们看到的一切图片,本质上都是数据,如何理解和处理这些图像数据是很大的难题,不过庆幸的是,在 Python 中,已经有了非常...【详细内容】
2022-12-28  Tags: Python  点击:(9)  评论:(0)  加入收藏
▌简易百科推荐
前言许多小伙伴已经可以使用 Python 解决小问题。定义几个变量,洋洋洒洒写几段 if 和 for 都不喘气。但是,面对一个稍微复杂的问题,总感觉哪里不对劲,好像代码怎么样都写不出来...【详细内容】
2023-01-06    网易号  Tags:python   点击:(0)  评论:(0)  加入收藏
eval()函数是Python的内置函数,功能非常强大,但是存在不小的安全隐患。有些企业或项目出于安全考虑,禁止使用eval()函数,会在一些安全相关的扫描校验中进行识别和拦截,杜绝使用。...【详细内容】
2023-01-05  互联共商    Tags:python   点击:(0)  评论:(0)  加入收藏
时间序列数据是一种在一段时间内收集的数据类型,它通常用于金融、经济学和气象学等领域,经常通过分析来了解随着时间的推移的趋势和模式Pandas是Python中一个强大且流行的数据...【详细内容】
2023-01-04  互联网资讯看板    Tags:Python   点击:(0)  评论:(0)  加入收藏
导读:使用 C 扩展为 Python 提供特定功能。本文字数:7993,阅读时长大约: 9分钟 使用 C 扩展为 Python 提供特定功能。 在前一篇文章中,我介绍了 opensource.com。在大多数系统上,C...【详细内容】
2023-01-03  Linux 中国    Tags:Python   点击:(14)  评论:(0)  加入收藏
TikTokDownload 是由国人开源的抖音去水印视频下载工具。开源地址是:https://github.com/Johnserf-Seed/TikTokDownload对于某些做视频分析和研究的同学来说,这个工具非常有用...【详细内容】
2023-01-03  Python实用宝典    Tags:Python   点击:(14)  评论:(0)  加入收藏
问题描述:给定四个整数,任意使用加、减、乘、除和小括号,构造出一个表达式,使得其最终结果为24,并输出这四个数字所组成的所有表达式。例如:34-15/3-5=24代码'''...【详细内容】
2023-01-03  汪同学Python  今日头条  Tags:Python   点击:(6)  评论:(0)  加入收藏
本文分享自华为云社区《[Python图像处理] 三十.图像预处理之图像去雾详解(ACE算法和暗通道先验去雾算法)丨【拜托了,物联网!】-云社区-华为云》,作者:eastmount 。一.图像去雾随着...【详细内容】
2022-12-30    华为云社区  Tags:Python   点击:(12)  评论:(0)  加入收藏
下面从这几个方面来详细详解python面向对象: 初识对象 成员方法 类和对象 构造方法 其它内置方法 封装 继承 类型注解 多态 综合案例一、初识对象生活中数据的组织 学校开学...【详细内容】
2022-12-29  传智教育官方账号  今日头条  Tags:Python   点击:(18)  评论:(0)  加入收藏
在当今这个社会,数据就是财富,数据就是金钱,一切都离不开数据,我们看到的一切图片,本质上都是数据,如何理解和处理这些图像数据是很大的难题,不过庆幸的是,在 Python 中,已经有了非常...【详细内容】
2022-12-28    网易号  Tags:python   点击:(9)  评论:(0)  加入收藏
一、ChatGPT简介1.ChatGPT工作原理ChatGPT是一种使用GPT-3预训练的语言模型;用于自然语言处理任务,特别是聊天机器人的建模。GPT-3是OpenAI开发的一种大型神经语言模型,它能够...【详细内容】
2022-12-23  digitalclub  微信公众号  Tags:ChatGPT   点击:(36)  评论:(0)  加入收藏
站内最新
站内热门
站内头条